2,311 research outputs found

    Outdoor learning: Scottish primary teachers’ perceptions of training and professional development

    Get PDF
    Outdoor learning has long been an important feature of Scottish education, but the non-prescriptive nature of the curriculum has contributed to wide variations in schools’ provision of outdoor educational experiences (Ross et al., 2007). Curriculum for Excellence (CfE) further encourages the use of the outdoors as a context for learning, but still does not make this mandatory (Beames et al., 2009). However, changes to the Standards for Teacher Registration require all teachers to demonstrate use of the outdoors in their teaching (GTCS, 2012).<p></p> As part of research exploring educational farm visits for primary school children, a survey of teachers in May 2013 included questions on teachers’ perceptions of knowledge and training on outdoor learning. The survey results informed a series of teacher interviews, during which these topics were also discussed.<p></p> The survey results indicate that primary teachers’ perceptions of their own training vary widely, while they tend to feel that probationer teachers are not well informed on outdoor learning. The need for further training and CPD was a clear theme in the qualitative elements of the survey, and early interview findings suggest that learning informally, from colleagues sharing their own experiences, is an important feature of teachers’ professional development.<p></p> Although “prospects for learning outdoors have rarely been better” than under CfE (Thorburn & Allison, 2013), survey findings indicate that previously identified issues around training and CPD (e.g. Nicol et al., 2007) seem to persist. Whether the views of teachers taking part in interviews support these early indications will be known by summer 2014

    Global change and conservation triage on National Wildlife Refuges

    Get PDF
    National Wildlife Refuges (NWRs) in the United States play an important role in the adaptation of social-ecological systems to climate change, land-use change, and other global-change processes. Coastal refuges are already experiencing threats from sea-level rise and other change processes that are largely beyond their ability to influence, while at the same time facing tighter budgets and reduced staff. We engaged in workshops with NWR managers along the U.S. Atlantic coast to understand the problems they face from global-change processes and began a multidisciplinary collaboration to use decision science to help address them. We are applying a values-focused approach to base management decisions on the resource objectives of land managers, as well as those of stakeholders who may benefit from the goods and services produced by a refuge. Two insights that emerged from our workshops were a conspicuous mismatch between the scale at which management can influence outcomes and the scale of environmental processes, and the need to consider objectives related to ecosystem goods and services that traditionally have not been explicitly considered by refuges (e.g., protection from storm surge). The broadening of objectives complicates the decision-making process, but also provides opportunities for collaboration with stakeholders who may have agendas different from those of the refuge, as well as an opportunity for addressing problems across scales. From a practical perspective, we recognized the need to (1) efficiently allocate limited staff time and budgets for short-term management of existing programs and resources under the current refuge design and (2) develop long-term priorities for acquiring or protecting new land/habitat to supplement or replace the existing refuge footprint and thus sustain refuge values as the system evolves over time. Structuring the decision-making problem in this manner facilitated a better understanding of the issues of scale and suggested that a long-term solution will require a significant reassessment of objectives to better reflect the comprehensive values of refuges to society. We discuss some future considerations to integrate these two problems into a single framework by developing novel optimization approaches for dynamic problems that account for uncertainty in future conditions

    A Parallel Adaptive P3M code with Hierarchical Particle Reordering

    Full text link
    We discuss the design and implementation of HYDRA_OMP a parallel implementation of the Smoothed Particle Hydrodynamics-Adaptive P3M (SPH-AP3M) code HYDRA. The code is designed primarily for conducting cosmological hydrodynamic simulations and is written in Fortran77+OpenMP. A number of optimizations for RISC processors and SMP-NUMA architectures have been implemented, the most important optimization being hierarchical reordering of particles within chaining cells, which greatly improves data locality thereby removing the cache misses typically associated with linked lists. Parallel scaling is good, with a minimum parallel scaling of 73% achieved on 32 nodes for a variety of modern SMP architectures. We give performance data in terms of the number of particle updates per second, which is a more useful performance metric than raw MFlops. A basic version of the code will be made available to the community in the near future.Comment: 34 pages, 12 figures, accepted for publication in Computer Physics Communication

    Demographic profiles and environmental drivers of variation relate to individual breeding state in a long-lived trans-oceanic migratory seabird, the Manx shearwater.

    Get PDF
    Understanding the points in a species breeding cycle when they are most vulnerable to environmental fluctuations is key to understanding interannual demography and guiding effective conservation and management. Seabirds represent one of the most threatened groups of birds in the world, and climate change and severe weather is a prominent and increasing threat to this group. We used a multi-state capture-recapture model to examine how the demographic rates of a long-lived trans-oceanic migrant seabird, the Manx shearwater Puffinus puffinus, are influenced by environmental conditions experienced at different stages of the annual breeding cycle and whether these relationships vary with an individual's breeding state in the previous year (i.e., successful breeder, failed breeder and non-breeder). Our results imply that populations of Manx shearwaters are comprised of individuals with different demographic profiles, whereby more successful reproduction is associated with higher rates of survival and breeding propensity. However, we found that all birds experienced the same negative relationship between rates of survival and wind force during the breeding season, indicating a cost of reproduction (or central place constraint for non-breeders) during years with severe weather conditions. We also found that environmental effects differentially influence the breeding propensity of individuals in different breeding states. This suggests individual spatio-temporal variation in habitat use during the annual cycle, such that climate change could alter the frequency that individuals with different demographic profiles breed thereby driving a complex and less predictable population response. More broadly, our study highlights the importance of considering individual-level factors when examining population demography and predicting how species may respond to climate change

    Book Reviews

    Get PDF
    With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses 6 years of IceCube data focusing on muon neutrino ‘track’ events from the Northern Hemisphere, while the second analysis uses 2 years of ‘cascade’ events from the full sky. Known background components and the hypothetical flux from unstable dark matter are fitted to the experimental data. Since no significant excess is observed in either analysis, lower limits on the lifetime of dark matter particles are derived: we obtain the strongest constraint to date, excluding lifetimes shorter than 102810^{28} s at 90% CL for dark matter masses above 10 TeV

    An Exome-Wide Sequencing Study of Lipid Response to High-Fat Meal and Fenofibrate in Caucasians from the GOLDN Cohort

    Get PDF
    Our understanding of genetic influences on the response of lipids to specific interventions is limited. In this study, we sought to elucidate effects of rare genetic variants on lipid response to a high-fat meal challenge and fenofibrate (FFB) therapy in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) cohort using an exome-wide sequencing-based association study. Our results showed that the rare coding variants in ITGA7, SIPA1L2, and CEP72 are significantly associated with fasting LDL cholesterol response to FFB (P = 1.24E-07), triglyceride postprandial area under the increase (AUI) (P = 2.31E-06), and triglyceride postprandial AUI response to FFB (P = 1.88E-06), respectively. We sought to replicate the association for SIPA1L2 in the Heredity and Phenotype Intervention (HAPI) Heart Study, which included a high-fat meal challenge but not FFB treatment. The associated rare variants in GOLDN were not observed in the HAPI Heart study, and thus the gene-based result was not replicated. For functional validation, we found that gene transcript level of SIPA1L2 is associated with triglyceride postprandial AUI (P \u3c 0.05) in GOLDN. Our study suggests unique genetic mechanisms contributing to the lipid response to the high-fat meal challenge and FFB therapy

    Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data

    Get PDF
    Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere.Comment: 19 pages, 17 figures, 2 table

    Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data

    Get PDF
    We report a quasi-differential upper limit on the extremely-high-energy (EHE) neutrino flux above 5×1065\times 10^{6} GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10610^{6} GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5×1065 \times 10^{6} and 5×10105 \times 10^{10} GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\ {\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}at at 10^9\ {\rm GeV}$. A significant part of the parameter-space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review

    A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data

    Get PDF
    We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E2E^{-2} energy spectrum assumed, which is 0.0021 GeV cm2^{-2} per burst for emission timescales up to \textasciitilde102^2 seconds from the northern hemisphere stacking search.Comment: 15 pages, 9 figure

    Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1

    Get PDF
    In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. IceCube began releasing alerts for single high-energy (E>60E > 60 TeV) neutrino detections with sky localisation regions of order 1 deg radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for any optical transients that may be related to the neutrinos. Typically 10-20 faint (m<22.5m < 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of \sim50 %), we found a SN PS16cgx, located at 10.0' from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at z = 0.2895. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak SiII absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5σ\sigma limiting magnitude of m22m \sim 22 mag, between 1 day and 25 days after detection.Comment: 20 pages, 6 figures, accepted to A&
    corecore