365 research outputs found
Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle
A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO<sub>2</sub> concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5&times;10<sup>15</sup> m<sup>3</sup> and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. <br> A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO<sub>2</sub>. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera &delta;<sup>18</sup>O signals. In contrast, low insolation and low atmospheric CO<sub>2</sub> concentration are both necessary to trigger a long-lasting glaciation over Eurasia
Science with the Keck Interferometer ASTRA Program
The ASTrometric and phase-Referenced Astronomy (ASTRA) project will provide
phase referencing and astrometric observations at the Keck Interferometer,
leading to enhanced sensitivity and the ability to monitor orbits at an
accuracy level of 30-100 microarcseconds. Here we discuss recent scientific
results from ASTRA, and describe new scientific programs that will begin in
2010-2011. We begin with results from the "self phase referencing" (SPR) mode
of ASTRA, which uses continuum light to correct atmospheric phase variations
and produce a phase-stabilized channel for spectroscopy. We have observed a
number of protoplanetary disks using SPR and a grism providing a spectral
dispersion of ~2000. In our data we spatially resolve emission from dust as
well as gas. Hydrogen line emission is spectrally resolved, allowing
differential phase measurements across the emission line that constrain the
relative centroids of different velocity components at the 10 microarcsecond
level. In the upcoming year, we will begin dual-field phase referencing (DFPR)
measurements of the Galactic Center and a number of exoplanet systems. These
observations will, in part, serve as precursors to astrometric monitoring of
stellar orbits in the Galactic Center and stellar wobbles of exoplanet host
stars. We describe the design of several scientific investigations capitalizing
on the upcoming phase-referencing and astrometric capabilities of ASTRA.Comment: Published in the proceedings of the SPIE 2010 conference on "Optical
and Infrared Interferometry II
Impact of precession on the climate, vegetation and fire activity in southern Africa during MIS4
Open access journalhe relationships between climate, vegetation and fires are a major subject of investigation in the context of climate change. In southern Africa, fire is known to play a crucial role in the existence of grasslands and Mediterranean-type biomes. Microcharcoal-based reconstructions of past fire activity in that region have shown a tight correlation between grass-fueled fires and the precessional cycle, with maximum fire activity during maxima of the climatic precession index. These changes have been interpreted as the result of changes in fuel load in response to precipitation changes in eastern southern Africa. Here we use the general circulation model IPSL_CM5A (Institut Pierre Simon Laplace Climate Model version 5A) and the dynamic vegetation model LPJ-LMfire to investigate the response of climate, vegetation and fire activity to precession changes in southern Africa during marine isotopic stage 4 (74–59 kyr BP). We perform two climatic simulations, for a maximum and minimum of the precession index, and use a statistical downscaling method to increase the spatial resolution of the IPSL_CM5A outputs over southern Africa and perform high-resolution simulations of the vegetation and fire activity. Our results show an anticorrelation between the northern and southern African monsoons in response to precession changes. A decrease of the precession climatic index leads to a precipitation decrease in the summer rainfall area of southern Africa. The drying of climate leads to a decrease of vegetation cover and fire activity. Our results are in qualitative agreement with data and confirm that fire activity in southern Africa during MIS4 is mainly driven by vegetation cover.European Research Counci
Disentangling Confused Stars at the Galactic Center with Long Baseline Infrared Interferometry
We present simulations of Keck Interferometer ASTRA and VLTI GRAVITY
observations of mock star fields in orbit within ~50 milliarcseconds of Sgr A*.
Dual-field phase referencing techniques, as implemented on ASTRA and planned
for GRAVITY, will provide the sensitivity to observe Sgr A* with infrared
interferometers. Our results show an improvement in the confusion noise limit
over current astrometric surveys, opening a window to study stellar sources in
the region. Since the Keck Interferometer has only a single baseline, the
improvement in the confusion limit depends on source position angles. The
GRAVITY instrument will yield a more compact and symmetric PSF, providing an
improvement in confusion noise which will not depend as strongly on position
angle. Our Keck results show the ability to characterize the star field as
containing zero, few, or many bright stellar sources. We are also able to
detect and track a source down to mK~18 through the least confused regions of
our field of view at a precision of ~200 microarcseconds along the baseline
direction. This level of precision improves with source brightness. Our GRAVITY
results show the potential to detect and track multiple sources in the field.
GRAVITY will perform ~10 microarcsecond astrometry on a mK=16.3 source and ~200
microarcsecond astrometry on a mK=18.8 source in six hours of monitoring a
crowded field. Monitoring the orbits of several stars will provide the ability
to distinguish between multiple post-Newtonian orbital effects, including those
due to an extended mass distribution around Sgr A* and to low-order General
Relativistic effects. Early characterizations of the field by ASTRA including
the possibility of a precise source detection, could provide valuable
information for future GRAVITY implementation and observation.Comment: Accepted for publication in Ap
Luminosity-variation independent location of the circum-nuclear, hot dust in NGC 4151
After recent sensitivity upgrades at the Keck Interferometer (KI), systematic
interferometric 2um studies of the innermost dust in nearby Seyfert nuclei are
within observational reach. Here, we present the analysis of new
interferometric data of NGC 4151, discussed in context of the results from
recent dust reverberation, spectro-photometric and interferometric campaigns.
The complete data set gives a complex picture, in particular the measured
visibilities from now three different nights appear to be rather insensitive to
the variation of the nuclear luminosity. KI data alone indicate two scenarios:
the K-band emission is either dominated to ~90% by size scales smaller than
30mpc, which falls short of any dust reverberation measurement in NGC 4151 and
of theoretical models of circum-nuclear dust distributions. Or contrary, and
more likely, the K-band continuum emission is dominated by hot dust (>= 1300K)
at linear scales of about 50mpc. The linear size estimate varies by a few tens
of percent depending on the exact morphology observed. Our interferometric,
deprojected centro-nuclear dust radius estimate of 55+-5mpc is roughly
consistent with the earlier published expectations from circum-nuclear, dusty
radiative transfer models, and spectro-photometric modeling. However, our data
do not support the notion that the dust emission size scale follows the nuclear
variability of NGC 4151 as a R_dust \propto L_nuc^0.5 scaling relation. Instead
variable nuclear activity, lagging, and variable dust response to illumination
changes need to be combined to explain the observations.Comment: 19 pages, 3 figures, 3 tables, accepted for publication in Ap
Quantifying molecular oxygen isotope variations during a Heinrich stadial
International audienceδ 18 O of atmospheric oxygen (δ 18 O atm) undergoes millennial-scale variations during the last glacial period, and systematically increases during Heinrich stadials (HSs). Changes in δ 18 O atm combine variations in biospheric and water cycle processes. The identification of the main driver of the millennial variability in δ 18 O atm is thus not straightforward. Here, we quantify the response of δ 18 O atm to such millennial events using a freshwater hosing simulation performed under glacial boundary conditions. Our global approach takes into account the latest estimates of isotope frac-tionation factor for respiratory and photosynthetic processes and make use of atmospheric water isotope and vegetation changes. Our modeling approach allows to reproduce the main observed features of a HS in terms of climatic conditions , vegetation distribution and δ 18 O of precipitation. We use it to decipher the relative importance of the different processes behind the observed changes in δ 18 O atm. The results highlight the dominant role of hydrology on δ 18 O atm and confirm that δ 18 O atm can be seen as a global integrator of hydrological changes over vegetated areas
Confronting Standard Models of Proto--Planetary Disks With New Mid--Infrared Sizes from the Keck Interferometer
We present near and mid-infrared interferometric observations made with the
Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the
IRTF of 11 well known young stellar objects, several observed for the first
time in these spectral and spatial resolution regimes. With AU-level spatial
resolution, we first establish characteristic sizes of the infrared emission
using a simple geometrical model consisting of a hot inner rim and mid-infrared
disk emission. We find a high degree of correlation between the stellar
luminosity and the mid-infrared disk sizes after using near-infrared data to
remove the contribution from the inner rim. We then use a semi-analytical
physical model to also find that the very widely used "star + inner dust rim +
flared disk" class of models strongly fails to reproduce the SED and
spatially-resolved mid-infrared data simultaneously; specifically a more
compact source of mid-infrared emission is required than results from the
standard flared disk model. We explore the viability of a modification to the
model whereby a second dust rim containing smaller dust grains is added, and
find that the two-rim model leads to significantly improved fits in most cases.
This complexity is largely missed when carrying out SED modelling alone,
although detailed silicate feature fitting by McClure et al. 2013 recently came
to a similar conclusion. As has been suggested recently by Menu et al. 2015,
the difficulty in predicting mid-infrared sizes from the SED alone might hint
at "transition disk"-like gaps in the inner AU; however, the relatively high
correlation found in our mid-infrared disk size vs. stellar luminosity relation
favors layered disk morphologies and points to missing disk model ingredients
instead
First Faint Dual-field Off-axis Observations in Optical Long Baseline Interferometry
Ground-based long baseline interferometers have long been limited in sensitivity in part by the short integration periods imposed by atmospheric turbulence. The first observation fainter than this limit was performed on 2011 January 22 when the Keck Interferometer observed a K = 11.5 target, about 1 mag fainter than its K = 10.3 atmospherically imposed limit; the currently demonstrated limit is K = 12.5. These observations were made possible by the Dual-Field Phase-Referencing (DFPR) instrument, part of the NSF-funded ASTrometry and phase-Referenced Astronomy project; integration times longer than the turbulence time scale are made possible by its ability to simultaneously measure the real-time effects of the atmosphere on a nearby bright guide star and correct for it on the faint target. We present the implementation of DFPR on the Keck Interferometer. Then, we detail its on-sky performance focusing on the accuracy of the turbulence correction and the resulting fringe contrast stability
Tests with a Carlina-type diluted telescope; Primary coherencing
Studies are under way to propose a new generation of post-VLTI
interferometers. The Carlina concept studied at the Haute- Provence Observatory
is one of the proposed solutions. It consists in an optical interferometer
configured like a diluted version of the Arecibo radio telescope: above the
diluted primary mirror made of fixed cospherical segments, a helium balloon (or
cables suspended between two mountains), carries a gondola containing the focal
optics. Since 2003, we have been building a technical demonstrator of this
diluted telescope. First fringes were obtained in May 2004 with two
closely-spaced primary segments and a CCD on the focal gondola. We have been
testing the whole optical train with three primary mirrors. The main aim of
this article is to describe the metrology that we have conceived, and tested
under the helium balloon to align the primary mirrors separate by 5-10 m on the
ground with an accuracy of a few microns. The servo loop stabilizes the mirror
of metrology under the helium balloon with an accuracy better than 5 mm while
it moves horizontally by 30 cm in open loop by 10-20 km/h of wind. We have
obtained the white fringes of metrology; i.e., the three mirrors are aligned
(cospherized) with an accuracy of {\approx} 1 micron. We show data proving the
stability of fringes over 15 minutes, therefore providing evidence that the
mechanical parts are stabilized within a few microns. This is an important step
that demonstrates the feasibility of building a diluted telescope using cables
strained between cliffs or under a balloon. Carlina, like the MMT or LBT, could
be one of the first members of a new class of telescopes named diluted
telescopes.Comment: 18 pages, 17 figures, A&A, accepte
- …