1,009 research outputs found

    Neural network interpolation of the magnetic field for the LISA Pathfinder Diagnostics Subsystem

    Full text link
    LISA Pathfinder is a science and technology demonstrator of the European Space Agency within the framework of its LISA mission, which aims to be the first space-borne gravitational wave observatory. The payload of LISA Pathfinder is the so-called LISA Technology Package, which is designed to measure relative accelerations between two test masses in nominal free fall. Its disturbances are monitored and dealt by the diagnostics subsystem. This subsystem consists of several modules, and one of these is the magnetic diagnostics system, which includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at the positions of the test masses. However, since the magnetometers are located far from the positions of the test masses, the magnetic field at their positions must be interpolated. It has been recently shown that because there are not enough magnetic channels, classical interpolation methods fail to derive reliable measurements at the positions of the test masses, while neural network interpolation can provide the required measurements at the desired accuracy. In this paper we expand these studies and we assess the reliability and robustness of the neural network interpolation scheme for variations of the locations and possible offsets of the magnetometers, as well as for changes in environmental conditions. We find that neural networks are robust enough to derive accurate measurements of the magnetic field at the positions of the test masses in most circumstances

    Stabilizing entanglement autonomously between two superconducting qubits

    Full text link
    Quantum error-correction codes would protect an arbitrary state of a multi-qubit register against decoherence-induced errors, but their implementation is an outstanding challenge for the development of large-scale quantum computers. A first step is to stabilize a non-equilibrium state of a simple quantum system such as a qubit or a cavity mode in the presence of decoherence. Several groups have recently accomplished this goal using measurement-based feedback schemes. A next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved by an autonomous feedback scheme which combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have recently been used for qubit reset and the stabilization of a single qubit state, as well as for creating and stabilizing states of multipartite quantum systems. Unlike conventional, measurement-based schemes, an autonomous approach counter-intuitively uses engineered dissipation to fight decoherence, obviating the need for a complicated external feedback loop to correct errors, simplifying implementation. Instead the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building-block state for quantum information processing. Such autonomous schemes, broadly applicable to a variety of physical systems as demonstrated by a concurrent publication with trapped ion qubits, will be an essential tool for the implementation of quantum-error correction.Comment: 39 pages, 7 figure

    A four-helix bundle stores copper for methane oxidation

    Get PDF
    Methane-oxidising bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase (pMMO). Certain methanotrophs are also able to switch to using the iron-containing soluble MMO (sMMO) to catalyse methane oxidation, with this switchover regulated by copper. MMOs are Nature’s primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and MMOs have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. We have discovered and characterised a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for pMMO. Csp1 is a tetramer of 4-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realised. Cytosolic homologues of Csp1 are present in diverse bacteria thus challenging the dogma that such organisms do not use copper in this location

    Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds

    Get PDF
    Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    Higher-order multipole amplitudes in charmonium radiative transitions

    Full text link
    Using 24 million ψψ(2S)\psi' \equiv \psi(2S) decays in CLEO-c, we have searched for higher multipole admixtures in electric-dipole-dominated radiative transitions in charmonia. We find good agreement between our data and theoretical predictions for magnetic quadrupole (M2) amplitudes in the transitions ψγχc1,2\psi' \to \gamma \chi_{c1,2} and χc1,2γJ/ψ\chi_{c1,2} \to \gamma J/\psi, in striking contrast to some previous measurements. Let b2Jb_2^J and a2Ja_2^J denote the normalized M2 amplitudes in the respective aforementioned decays, where the superscript JJ refers to the angular momentum of the χcJ\chi_{cJ}. By performing unbinned maximum likelihood fits to full five-parameter angular distributions, we determine the ratios a2J=1/a2J=2=0.670.13+0.19a_2^{J=1}/a_2^{J=2} = 0.67^{+0.19}_{-0.13} and a2J=1/b2J=1=2.270.99+0.57a_2^{J=1}/b_2^{J=1} = -2.27^{+0.57}_{-0.99}, where the theoretical predictions are independent of the charmed quark magnetic moment and are a2J=1/a2J=2=0.676±0.071a_2^{J=1}/a_2^{J=2} = 0.676 \pm 0.071 and a2J=1/b2J=1=2.27±0.16a_2^{J=1}/b_2^{J=1} = -2.27 \pm 0.16.Comment: 32 pages, 7 figures, acceptance updat

    Dalitz Plot Analysis of Ds to K+K-pi+

    Full text link
    We perform a Dalitz plot analysis of the decay Ds to K+K-pi+ with the CLEO-c data set of 586/pb of e+e- collisions accumulated at sqrt(s) = 4.17 GeV. This corresponds to about 0.57 million D_s+D_s(*)- pairs from which we select 14400 candidates with a background of roughly 15%. In contrast to previous measurements we find good agreement with our data only by including an additional f_0(1370)pi+ contribution. We measure the magnitude, phase, and fit fraction of K*(892) K+, phi(1020)pi+, K0*(1430)K+, f_0(980)pi+, f_0(1710)pi+, and f_0(1370)pi+ contributions and limit the possible contributions of other KK and Kpi resonances that could appear in this decay.Comment: 21 Pages,available through http://www.lns.cornell.edu/public/CLNS/, submitted to PR

    Search for D0 to p e- and D0 to pbar e+

    Full text link
    Using data recorded by CLEO-c detector at CESR, we search for simultaneous baryon and lepton number violating decays of the D^0 meson, specifically, D^0 --> p-bar e^+, D^0-bar --> p-bar e^+, D^0 --> p e^- and D^0-bar --> p e^-. We set the following branching fraction upper limits: D^0 --> p-bar e^+ (D^0-bar --> p-bar e^+) p e^- (D^0-bar --> p e^-) < 1.2 * 10^{-5}, both at 90% confidence level.Comment: 10 pages, available through http://www.lns.cornell.edu/public/CLNS/, submitted to PRD. Comments: changed abstract, added reference for section 1, vertical axis in Fig.5 changed (starts from 1.5 rather than 2.0), fixed typo

    Charmonium decays to gamma pi0, gamma eta, and gamma eta'

    Full text link
    Using data acquired with the CLEO-c detector at the CESR e+e- collider, we measure branching fractions for J/psi, psi(2S), and psi(3770) decays to gamma pi0, gamma eta, and gamma eta'. Defining R_n = B[ psi(nS)-->gamma eta ]/B[ psi(nS)-->gamma eta' ], we obtain R_1 = (21.1 +- 0.9)% and, unexpectedly, an order of magnitude smaller limit, R_2 < 1.8% at 90% C.L. We also use J/psi-->gamma eta' events to determine branching fractions of improved precision for the five most copious eta' decay modes.Comment: 14 pages, available through http://www.lns.cornell.edu/public/CLNS/, published in Physical Review
    corecore