101 research outputs found

    Ethnic discrimination prevalence and associations with health outcomes: data from a nationally representative cross-sectional survey of secondary school students in New Zealand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reported ethnic discrimination is higher among indigenous and minority adult populations. There is a paucity of nationally representative prevalence studies of ethnic discrimination among adolescents. Experiencing ethnic discrimination has been associated with a range of adverse health outcomes. NZ has a diverse ethnic population. There are health inequalities among young people from Māori and Pacific ethnic groups.</p> <p>Methods</p> <p>9107 randomly selected secondary school students participated in a nationally representative cross-sectional health and wellbeing survey conducted in 2007. The prevalence of ethnic discrimination by health professionals, by police, and ethnicity-related bullying were analysed. Logistic regression was used to examine the associations between ethnic discrimination and six health/wellbeing outcomes: self-rated health status, depressive symptoms in the last 12 months, cigarette smoking, binge alcohol use, feeling safe in ones neighbourhood, and self-rated school achievement.</p> <p>Results</p> <p>There were significant ethnic differences in the prevalences of ethnic discrimination. Students who experienced ethnic discrimination were less likely to report excellent/very good/good self-rated general health (OR 0.51; 95% CI 0.39, 0.65), feel safe in their neighbourhood (OR 0.48; 95% CI 0.40, 0.58), and more likely to report an episode of binge drinking in the previous 4 weeks (OR 1.77; 95% CI 1.45, 2.17). For all these outcomes the odds ratios for the group who were 'unsure' if they had experienced ethnic discrimination were similar to those of the 'yes' group.</p> <p>Ethnicity stratified associations between ethnic discrimination and the depression, cigarette smoking, and self-rated school achievement are reported. Within each ethnic group participants reporting ethnic discrimination were more likely to have adverse outcomes for these three variables. For all three outcomes the direction and size of the association between experience of ethnic discrimination and the outcome were similar across all ethnic groups.</p> <p>Conclusions</p> <p>Ethnic discrimination is more commonly reported by Indigenous and minority group students. Both experiencing and being 'unsure' about experiencing ethnic discrimination are associated with a range of adverse health/wellbeing outcomes. Our findings highlight the progress yet to be made to ensure that rights to be free from ethnic discrimination are met for young people living in New Zealand.</p

    Mechanical testing of thin-walled zirconia abutments

    Get PDF
    Although the use of zirconia abutments for implant-supported restorations has gained momentum with the increasing demand for esthetics, little informed design rationale has been developed to characterize their fatigue behavior under different clinical scenarios. However, to prevent the zirconia from fracturing, the use of a titanium connection in bicomponent aesthetic abutments has been suggested. OBJECTIVE: Mechanical testing of customized thin-walled titanium-zirconia abutments at the connection with the implant was performed in order to characterize the fatigue behavior and the failure modes for straight and angled abutments. MATERIAL AND METHODS: Twenty custom-made bi-component abutments were tested according to ISO 14801:2007 either at a straight or a 25º angle inclination (n=10 each group). Fatigue was conducted at 15 Hz for 5 million cycles in dry conditions at 20ºC±5ºC. Mean values and standard deviations were calculated for each group. All comparisons were performed by t-tests assuming unequal variances. The level of statistical significance was set at p≤0.05. Failed samples were inspected in a polarized-light and then in a scanning electron microscope. RESULTS: Straight and angled abutments mean maximum load was 296.7 N and 1,145 N, the dynamic loading mean F(max) was 237.4 N and 240.7 N, respectively. No significant differences resulted between the straight and angled bi-component abutments in both static (p=0.253) and dynamic testing (p=0.135). A significant difference in the bending moment required for fracture was detected between the groups (p=0.01). Fractures in the angled group occurred mainly at the point of load application, whereas in the straight abutments, fractures were located coronally and close to the thinly designed areas at the cervical region. CONCLUSION: Angled or straight thin-walled zirconia abutments presented similar F(max) under fatigue testing despite the different bending moments required for fracture. The main implication is that although zirconia angled or straight abutments presented similar mechanical behavior, the failure mode tended to be more catastrophic in straight (fracture at the cervical region) compared to angled abutments

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies

    Structure, function and diversity of the healthy human microbiome

    Get PDF
    Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273 to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander; U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.; U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.; R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.; R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.; R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang, F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J. V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.); DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research; U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL Laboratory-Directed Research and Development grant 20100034DR and the US Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis of the HMPdata was performed using National Energy Research Scientific Computing resources, the BluBioU Computational Resource at Rice University

    Flare Observations

    Get PDF
    corecore