190 research outputs found

    Identifying human diamine sensors for death related putrescine and cadaverine molecules

    Get PDF
    Pungent chemical compounds originating from decaying tissue are strong drivers of animal behavior. Two of the best-characterized death smell components are putrescine (PUT) and cadaverine (CAD), foul-smelling molecules produced by decarboxylation of amino acids during decomposition. These volatile polyamines act as 'necromones', triggering avoidance or attractive responses, which are fundamental for the survival of a wide range of species. The few studies that have attempted to identify the cognate receptors for these molecules have suggested the involvement of the seven-helix trace amine-associated receptors (TAARs), localized in the olfactory epithelium. However, very little is known about the precise chemosensory receptors that sense these compounds in the majority of organisms and the molecular basis of their interactions. In this work, we have used computational strategies to characterize the binding between PUT and CAD with the TAAR6 and TAAR8 human receptors. Sequence analysis, homology modeling, docking and molecular dynamics studies suggest a tandem of negatively charged aspartates in the binding pocket of these receptors which are likely to be involved in the recognition of these small biogenic diamines

    Role of structural dynamics at the receptor G protein interface for signal transduction

    Get PDF
    GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP). To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty), however with the α5 C-terminus (GαCT) forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket

    Targeting the hypoxic fraction of tumours using hypoxia activated prodrugs

    Get PDF
    The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high priority target and one therapeutic strategies designed to eradicate hypoxic cells in tumours are a group of compounds known collectively as hypoxia activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (i) the ability of oxygen to either reverse or inhibit the activation process and (ii) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples

    Nucleotide Binding Switches the Information Flow in Ras GTPases

    Get PDF
    The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. The guanine nucleotide-dependent intrinsic flexibility patterns of five G proteins were investigated in atomic detail through Molecular Dynamics simulations of the GDP- and GTP-bound states (SGDP and SGTP, respectively). For all the considered systems, the intrinsic flexibility of SGDP was higher than that of SGTP, suggesting that Guanine Exchange Factor (GEF) recognition and nucleotide switch require higher amplitude motions than effector recognition or GTP hydrolysis. Functional mode, dynamic domain, and interaction energy correlation analyses highlighted significant differences in the dynamics of small G proteins and Gα proteins, especially in the inactive state. Indeed, SGDP of Gαt, is characterized by a more extensive energy coupling between nucleotide binding site and distal regions involved in GEF recognition compared to small G proteins, which attenuates in the active state. Moreover, mechanically distinct domains implicated in nucleotide switch could be detected in the presence of GDP but not in the presence of GTP. Finally, in small G proteins, functional modes are more detectable in the inactive state than in the active one and involve changes in solvent exposure of two highly conserved amino acids in switches I and II involved in GEF recognition. The average solvent exposure of these amino acids correlates in turn with the rate of GDP release, suggesting for them either direct or indirect roles in the process of nucleotide switch. Collectively, nucleotide binding changes the information flow through the conserved Ras-like domain, where GDP enhances the flexibility of mechanically distinct portions involved in nucleotide switch, and favors long distance allosteric communication (in Gα proteins), compared to GTP

    G Protein Subunit Dissociation and Translocation Regulate Cellular Response to Receptor Stimulation

    Get PDF
    We examined the role of G proteins in modulating the response of living cells to receptor activation. The response of an effector, phospholipase C-β to M3 muscarinic receptor activation was measured using sensors that detect the generation of inositol triphosphate or diacylglycerol. The recently discovered translocation of Gβγ from plasma membrane to endomembranes on receptor activation attenuated this response. A FRET based G protein sensor suggested that in contrast to translocating Gβγ, non-translocating Gβγ subunits do not dissociate from the αq subunit on receptor activation leading to prolonged retention of the heterotrimer state and an accentuated response. M3 receptors with tethered αq induced differential responses to receptor activation in cells with or without an endogenous translocation capable γ subunit. G protein heterotrimer dissociation and βγ translocation are thus unanticipated modulators of the intensity of a cell's response to an extracellular signal

    The Study on Newly Developed McAb NJ001 Specific to Non-Small Cell Lung Cancer and Its Biological Characteristics

    Get PDF
    Monoclonal antibody (McAb) is the key tool for cancer immunodiagnosis and immunotherapy. McAb-based immunotherapy that targets tumor antigens has had great achivement. In this study, a cell clone which kept secreting high-titer IgG1-type McAb named NJ001 against human non-small cell lung cancer (NSCLC) cells was obtained. The titer of purified NJ001 was 2×106. The antigen named SP70 of NSCLC specifically identified by NJ001 was proved to be a protein with the relative molecular mass (Mr) of 70 kDa. The results of immunohistochemical staining indicated that NJ001 could positively react to NSCLC, but weak positively or negatively react to human small-cell lung cancer (SCLC), pulmonary pseudotumor and other epithelial tumors. In soft agar assay, the colony formation efficiency in NJ001 groups decreased in a dose-dependent manner. For the concentration of 100 µg/ml, 200 µg/ml and 400 µg/ml, the inhibition ratio of colony formation was 23.4%, 62.5% and 100% respectively. Meanwhile, NJ001 caused significant reduction in tumor volume and tumor weight compared to control mice in lung cancer xenograft model. The tumor growth inhibition ratio in 200 µg, 400 µg and 800 µg NJ001 groups was 10.44%, 37.29% and 44.04%, respectively. NJ001 also led to cytomorphological changes and induced the apoptosis of human lung adenocarcinoma cell line SPC-A1 significantly. The newly developed NJ001 selectively reacted to NSCLC and exhibited anti-tumor activity both in vitro and in vivo. NJ001 is of great value concerning immunodiagnostics and immunotherapy for NSCLC and holds promise for further research regarding the mechanism underlying tumor progression of NSCLC

    Genetic Variations in the Regulator of G-Protein Signaling Genes Are Associated with Survival in Late-Stage Non-Small Cell Lung Cancer

    Get PDF
    The regulator of G-protein signaling (RGS) pathway plays an important role in signaling transduction, cellular activities, and carcinogenesis. We hypothesized that genetic variations in RGS gene family may be associated with the response of late-stage non-small cell lung cancer (NSCLC) patients to chemotherapy or chemoradiotherapy. We selected 95 tagging single nucleotide polymorphisms (SNPs) in 17 RGS genes and genotyped them in 598 late-stage NSCLC patients. Thirteen SNPs were significantly associated with overall survival. Among them, rs2749786 of RGS12 was most significant. Stratified analysis by chemotherapy or chemoradiation further identified SNPs that were associated with overall survival in subgroups. Rs2816312 of RGS1 and rs6689169 of RGS7 were most significant in chemotherapy group and chemoradiotherapy group, respectively. A significant cumulative effect was observed when these SNPs were combined. Survival tree analyses identified potential interactions between rs944343, rs2816312, and rs1122794 in affecting survival time in patients treated with chemotherapy, while the genotype of rs6429264 affected survival in chemoradiation-treated patients. To our knowledge, this is the first study to reveal the importance of RGS gene family in the survival of late-stage NSCLC patients

    Evolution of a Signaling Nexus Constrained by Protein Interfaces and Conformational States

    Get PDF
    Heterotrimeric G proteins act as the physical nexus between numerous receptors that respond to extracellular signals and proteins that drive the cytoplasmic response. The Gα subunit of the G protein, in particular, is highly constrained due to its many interactions with proteins that control or react to its conformational state. Various organisms contain differing sets of Gα-interacting proteins, clearly indicating that shifts in sequence and associated Gα functionality were acquired over time. These numerous interactions constrained much of Gα evolution; yet Gα has diversified, through poorly understood processes, into several functionally specialized classes, each with a unique set of interacting proteins. Applying a synthetic sequence-based approach to mammalian Gα subunits, we established a set of seventy-five evolutionarily important class-distinctive residues, sites where a single Gα class is differentiated from the three other classes. We tested the hypothesis that shifts at these sites are important for class-specific functionality. Importantly, we mapped known and well-studied class-specific functionalities from all four mammalian classes to sixteen of our class-distinctive sites, validating the hypothesis. Our results show how unique functionality can evolve through the recruitment of residues that were ancestrally functional. We also studied acquisition of functionalities by following these evolutionarily important sites in non-mammalian organisms. Our results suggest that many class-distinctive sites were established early on in eukaryotic diversification and were critical for the establishment of new Gα classes, whereas others arose in punctuated bursts throughout metazoan evolution. These Gα class-distinctive residues are rational targets for future structural and functional studies

    Extracorporeal life support (ECLS) for pediatric trauma: experience with five cases

    Full text link
    Extracorporeal life support (ECLS) was used to treat five pediatric trauma patients (ages 1 to 17 years) with respiratory failure unresponsive to conventional mechanical ventilation. Diagnoses in these patients that resulted in respiratory failure included hydrocarbon aspiration (one patient), multiple trauma with pulmonary contusion (two patients), bronchopleural fistula (one patient), and neardrowning (one patient). Time on ECLS bypass averaged 328 h (range 140–527 h). Physiologic complications included bleeding, cardiac arrest, cardiac tamponade, hypoxemia, and hypotension. Mechanical complications involving the bypass circuit included roller-pump raceway rupture, roller-pump failure, and membrane oxygenator failure. All complications were managed without mortality. Three of the five patients were decannulated from ECLS and survived. Support was terminated in the remaining two due to irreversibility of the pulmonary injury. ECLS may provide life-saving support to pediatric patients with respiratory failure after trauma when conventional means of ventilatory support have failed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47185/1/383_2004_Article_BF00177095.pd

    Understanding and Fostering Collective Ideation: An Improvisation-Based Method

    Get PDF
    Although the collective view is receiving increasing attention in research, this perspective is missing from the approaches for fostering creativity and ideation. The present study aims to fill this research gap by understanding ideation as a collective phenomenon and by introducing a novel method for fostering collective ideation. The study builds on current research on knowledge creation, collective creativity, idea generation, and collective theatrical improvisation to introduce an approach for fostering collective ideation. In addition, as a secondary goal, the study provides empirical findings about the implementation of collective ideation in 13 distinct cases. The study builds links between knowledge creation and collective theatrical improvisation and, thus, highlights social and affective aspects of collective ideation as a knowledge creation.Post-print / Final draf
    corecore