95 research outputs found
Genetic Variations in the Regulator of G-Protein Signaling Genes Are Associated with Survival in Late-Stage Non-Small Cell Lung Cancer
The regulator of G-protein signaling (RGS) pathway plays an important role in signaling transduction, cellular activities, and carcinogenesis. We hypothesized that genetic variations in RGS gene family may be associated with the response of late-stage non-small cell lung cancer (NSCLC) patients to chemotherapy or chemoradiotherapy. We selected 95 tagging single nucleotide polymorphisms (SNPs) in 17 RGS genes and genotyped them in 598 late-stage NSCLC patients. Thirteen SNPs were significantly associated with overall survival. Among them, rs2749786 of RGS12 was most significant. Stratified analysis by chemotherapy or chemoradiation further identified SNPs that were associated with overall survival in subgroups. Rs2816312 of RGS1 and rs6689169 of RGS7 were most significant in chemotherapy group and chemoradiotherapy group, respectively. A significant cumulative effect was observed when these SNPs were combined. Survival tree analyses identified potential interactions between rs944343, rs2816312, and rs1122794 in affecting survival time in patients treated with chemotherapy, while the genotype of rs6429264 affected survival in chemoradiation-treated patients. To our knowledge, this is the first study to reveal the importance of RGS gene family in the survival of late-stage NSCLC patients
Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs
Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors
(GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and
Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the
evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod
genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and
designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and
arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of
the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a
conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and
Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in
representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in
protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of
nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan
radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication
and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.This work was supported by the Portuguese Foundation for Science and Technology (FCT) project PTDC/BIA-BCM/114395/2009, by the European
Regional Development Fund through COMPETE and FCT under the project ‘‘PEst-C/MAR/LA0015/2011.’’ RCF is in receipt of an FCT grant (SFRH/BPD/89811/2012)
and JCRC is supported by auxiliary research contract FCT Pluriannual funds attributed to CCMAR. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript
Chemical genetics strategies for identification of molecular targets
Chemical genetics is an emerging field that can be used to study the interactions of chemical compounds, including natural products, with proteins. Usually, the identification of molecular targets is the starting point for studying a drug’s mechanism of action and this has been a crucial step in understanding many biological processes. While a great variety of target identification methods have been developed over the last several years, there are still many bioactive compounds whose target proteins have not yet been revealed because no routine protocols can be adopted. This review contains information concerning the most relevant principles of chemical genetics with special emphasis on the different genomic and proteomic approaches used in forward chemical genetics to identify the molecular targets of the bioactive compounds, the advantages and disadvantages of each and a detailed list of successful examples
of molecular targets identified with these approaches
A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies
Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites
A genome-wide admixture scan for ancestry-linked genes predisposing to sarcoidosis in African-Americans
Genome-wide linkage and association studies have uncovered variants associated with sarcoidosis, a multi-organ granulomatous inflammatory disease. African ancestry may influence disease pathogenesis since African Americans are more commonly affected by sarcoidosis. Therefore, we conducted the first sarcoidosis genome-wide ancestry scan using a map of 1,384 highly ancestry informative single nucleotide polymorphisms genotyped on 1,357 sarcoidosis cases and 703 unaffected controls self-identified as African American. The most significant ancestry association was at marker rs11966463 on chromosome 6p22.3 (ancestry association risk ratio (aRR)= 1.90; p=0.0002). When we restricted the analysis to biopsy-confirmed cases, the aRR for this marker increased to 2.01; p=0.00007. Among the eight other markers that demonstrated suggestive ancestry associations with sarcoidosis were rs1462906 on chromosome 8p12 which had the most significant association with European ancestry (aRR=0.65; p=0.002), and markers on chromosomes 5p13 (aRR=1.46; p=0.005) and 5q31 (aRR=0.67; p=0.005), which correspond to regions we previously identified through sib pair linkage analyses. Overall, the most significant ancestry association for Scadding stage IV cases was to marker rs7919137 on chromosome 10p11.22 (aRR=0.27; p=2×10(−5)), a region not associated with disease susceptibility. In summary, through admixture mapping of sarcoidosis we have confirmed previous genetic linkages and identified several novel putative candidate loci for sarcoidosis
MicroRNA profiling of the pubertal mouse mammary gland identifies miR-184 as a candidate breast tumour suppressor gene
INTRODUCTION: The study of mammalian development has offered many insights into the molecular aetiology of cancer. We previously used analysis of mammary morphogenesis to discover a critical role for GATA-3 in mammary developmental and carcinogenesis. In recent years an important role for microRNAs (miRNAs) in a myriad of cellular processes in development and in oncogenesis has emerged. METHODS: microRNA profiling was conducted on stromal and epithelial cellular subsets microdissected from the pubertal mouse mammary gland. miR-184 was reactivated by transient or stable overexpression in breast cancer cell lines and examined using a series of in vitro (proliferation, tumour-sphere and protein synthesis) assays. Orthotopic xenografts of breast cancer cells were used to assess the effect of miR-184 on tumourigenesis as well as distant metastasis. Interactions between miR-184 and its putative targets were assessed by quantitative PCR, microarray, bioinformatics and 3' untranslated region Luciferase reporter assay. The methylation status of primary patient samples was determined by MBD-Cap sequencing. Lastly, the clinical prognostic significance of miR-184 putative targets was assessed using publicly available datasets. RESULTS: A large number of microRNA were restricted in their expression to specific tissue subsets. MicroRNA-184 (miR-184) was exclusively expressed in epithelial cells and markedly upregulated during differentiation of the proliferative, invasive cells of the pubertal terminal end bud (TEB) into ductal epithelial cells in vivo. miR-184 expression was silenced in mouse tumour models compared to non-transformed epithelium and in a majority of breast cancer cell line models. Ectopic reactivation of miR-184 inhibited the proliferation and self-renewal of triple negative breast cancer (TNBC) cell lines in vitro and delayed primary tumour formation and reduced metastatic burden in vivo. Gene expression studies uncovered multi-factorial regulation of genes in the AKT/mTORC1 pathway by miR-184. In clinical breast cancer tissues, expression of miR-184 is lost in primary TNBCs while the miR-184 promoter is methylated in a subset of lymph node metastases from TNBC patients. CONCLUSIONS: These studies elucidate a new layer of regulation in the PI3K/AKT/mTOR pathway with relevance to mammary development and tumour progression and identify miR-184 as a putative breast tumour suppressor
Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)
Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced
- …