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Abstract

Introduction: The study of mammalian development has offered many insights into the molecular aetiology of
cancer. We previously used analysis of mammary morphogenesis to discover a critical role for GATA-3 in mammary
developmental and carcinogenesis. In recent years an important role for microRNAs (miRNAs) in a myriad of cellular
processes in development and in oncogenesis has emerged.

Methods: microRNA profiling was conducted on stromal and epithelial cellular subsets microdissected from the
pubertal mouse mammary gland. miR-184 was reactivated by transient or stable overexpression in breast cancer cell
lines and examined using a series of in vitro (proliferation, tumour-sphere and protein synthesis) assays. Orthotopic
xenografts of breast cancer cells were used to assess the effect of miR-184 on tumourigenesis as well as distant
metastasis. Interactions between miR-184 and its putative targets were assessed by quantitative PCR, microarray,
bioinformatics and 3′ untranslated region Luciferase reporter assay. The methylation status of primary patient
samples was determined by MBD-Cap sequencing. Lastly, the clinical prognostic significance of miR-184 putative
targets was assessed using publicly available datasets.

Results: A large number of microRNA were restricted in their expression to specific tissue subsets. MicroRNA-184
(miR-184) was exclusively expressed in epithelial cells and markedly upregulated during differentiation of the proliferative,
invasive cells of the pubertal terminal end bud (TEB) into ductal epithelial cells in vivo. miR-184 expression was silenced
in mouse tumour models compared to non-transformed epithelium and in a majority of breast cancer cell line models.
Ectopic reactivation of miR-184 inhibited the proliferation and self-renewal of triple negative breast cancer (TNBC) cell
lines in vitro and delayed primary tumour formation and reduced metastatic burden in vivo. Gene expression studies
uncovered multi-factorial regulation of genes in the AKT/mTORC1 pathway by miR-184. In clinical breast cancer tissues,
expression of miR-184 is lost in primary TNBCs while the miR-184 promoter is methylated in a subset of lymph node
metastases from TNBC patients.

Conclusions: These studies elucidate a new layer of regulation in the PI3K/AKT/mTOR pathway with relevance to
mammary development and tumour progression and identify miR-184 as a putative breast tumour suppressor.
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Introduction
Breast cancer is the most common malignancy that
occurs in women globally [1]. Despite the advancement in
therapies, many women will suffer from relapse, acquiring
metastatic lesions in distant sites and eventually suc-
cumbing to cancer related deaths [2–4]. Currently there
is a lack of targeted therapies, in particular towards
the triple negative breast cancer (TNBC) subtype.
TNBC are aggressive and highly invasive, and these
tumours lack estrogen receptor (ER), progesterone
receptor (PR) and human epidermal growth factor 2
(HER2) expression [5].
A large body of evidence has identified augmented

receptor tyrosine kinase (RTK)-PI3K-Akt-mTOR activity
in the basal like and TBNCs either due to mutations in
RTKs or PIK3CA or loss of phosphatase and tensin
homologue (PTEN) expression [6–9]. This pathway has
therefore become a major focus of breast cancer drug
development, although patient responses to these novel
drug compounds in clinical trials have been variable,
perhaps due to an incomplete understanding of pathway
interactions and feedback loops. Clearly, a thorough
understanding of the regulation of these signalling
pathways is essential to effectively personalise breast
cancer treatment.
microRNAs (miRNAs) are small non coding RNAs that

modulate gene expression post transcriptionally. They
typically silence their targets by binding their 3′ untrans-
lated regions (UTRs) in a sequence-specific manner [10].
There are a wealth of experimental data demonstrating
the pleiotropy of miRNAs in regulating a multitude of
cellular processes, such as embryonic stem cell differ-
entiation [11, 12], cell fate and lineage commitment
[13–15], organogenesis [16–18] and oncogenesis [19–23].
The pubertal developing mammary gland is elaborated

through fat pad invasion by terminal end buds (TEBs);
poorly differentiated, unpolarised, proliferative and invasive
structures [24] that are enriched for stem and progenitor
cell activity [25], with many cellular and molecular
similarities to neoplastic cells [26]. We previously
examined the expression of mRNAs between cellular
subsets of the developing mammary gland, found
GATA-3 to be specifically expressed in epithelial cells
and went on to identify GATA-3 as an important breast
tumour suppressor gene [27, 28].
In this study, we comprehensively profiled miRNA

expression in the different cellular compartments
within the mammary epithelium of mice. We identify
miR-184 as a microRNA associated with epithelial differen-
tiation and demonstrated that miR-184 is silenced and
methylated in a subset of TBNC. Further functional charac-
terisation of miR-184 revealed that it is a potential tumour
suppressor miRNA in breast cancer; in suppressing
cell proliferation, self-renewal in vitro and delaying the
formation of metastatic lesions in distant sites in vivo. By
performing microarray studies and informatic analysis, we
discovered that miR-184 regulates the AKT/mTORC1
pathway by targeting AKT2, TSC2 and PRAS40 in
suppressing activity of S6K1 and protein synthesis.

Methods
Expression profiling of TEBs, ducts and stroma
TEBs (n = 4), mature ducts (n = 4), and distal stroma
regions (n = 4) were microdissected from mammary glands
of anaesthetised 5-week-old β-actin–GFP reporter mice
(FVB/n, Jackson laboratory, Bar Habor, Maine, USA) using
a Leica fluorescence microscope (Leica microsystems,
Wetzlar, Germany). Tissue samples were homogenised in
Trizol Reagent (Life Technologies, Carlsbad, CA, USA)
with a polytron tissue homogeniser (Thermo Fisher Scientific,
Waltham, MA, USA). Total RNA was extracted according
to a modified protocol based on the manufacturer’s
instructions (Invitrogen). The final RNA pellet was
ethanol precipitated and washed in 80 % ethanol. RNA
samples consisting of TEBs (n = 3), mature ducts (n = 2)
and stroma (n = 3) were sent to the Ramaciotti Centre for
Gene Function Analysis for miRNA microarray profiling
(University of New South Wales, Sydney, Australia)
using the SurePrint Mouse miRNA Array V2 (Agilent
Technologies, Santa Clara, CA, USA). All animal work
was approved by the Garvan/St Vincent’s Hospital Animal
Ethics Committee and conducted in accordance with
NHMRC guidelines for the ethical treatment of animals.

Cell lines, retroviral infections
MDA-MB-231 and BT549 cells were maintained in
RPMI 1640 supplemented with 10 % FBS and 0.25 %
human insulin. HEK293E cells were maintained in
DMEM supplemented with 10 % FBS. MDA-MB-231
cells were obtained from the EG & G Mason Re-
search Institute, Worcester, Massachusetts, USA and
DNA fingerprinted. BT-549 cell lines were obtained from
ATCC. All cell lines used in experiments were cultured at
37 °C in 5 % CO2 and 95 % air. MDA-MB-231 cells were
first transduced with the retroviral vector pRQ-rtTA-GFP
followed by pRQ-miR184.

Primary tumour samples
Human tumour samples consisting of luminal A (ER+,
PR+, Her2−; n = 10), Her2 (ER−, PR−, Her2+; n = 9),
triple negative (ER−, PR−, Her2−; n = 7) and
matched normal (n = 7) were obtained from the
Victoria Cancer Biobank (VCB). Research use of human
tissues was approved by the St Vincents Hospital Human
Research Ethics Committee (Approval # 08/145). Tumour
samples were homogenised using a mortar and pestle.
Total RNA samples were extracted using miRVana kit
(Invitrogen) and ethanol precipitated with 80 % ethanol.
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Transfection with miRNA mimics
For MDA-MB-231 and BT549 cells, miRIDIAN miRNA
mimics (Dharmacon, Lafayette, CO, USA) were trans-
fected into cells using Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s protocol for transfecting
siRNA. Mimics (final concentration of 50 nM) were mixed
with 1 % lipofectamine 2000 (v/v) diluted in Opti-MEM
transfection medium (Invitrogen) and incubated for 20
minutes. The mimics were added dropwise onto cells in
growth medium at a final concentration of 50 nM. Fresh
medium was replaced 24 h post transfection. A non-
radioactive cell proliferation assay (Promega, Madison,
WI, USA) was used to assess the number of viable cells.
Three biological replicates were conducted.
MDA-MB-436 and HS578T breast cancer cells were

reverse transfected with 40 nM of either miR-184 mimic
or scrambled using Dharmafect 4 reagent (Dharmacon)
following manufacturer’s instructions; SiTox (Dharmacon)
was used as a positive control. The following day, medium
was changed and cells were left in culture for an additional
72 h. To assess viability, CellTiter-Glo (Promega) was added
directly into the cell medium (1:2 ratio) and left to incubate
for 10 minutes; luminescence was read using FLUOstar
Omega plate reader (BMG Labtech, Ortenburg, Germany).
The experiment was performed in three biological replicates.

Quantitative RT-PCR
Total RNA was extracted using the Trizol reagent
(Invitrogen) method with a modification where the
final RNA pellet was ethanol precipitated and washed
in 80 % ethanol. cDNA was generated using the Taqman
MiRNA Reverse Transcription Kit (Applied Biosystems)
using the specific primer from TaqMan MiRNA assay
(Applied Biosystems) according to the manufacturer’s
protocol. Quantitative PCR (qPCR) amplification was run
on the 7900 Real-time PCR system (Applied Biosystems).
All human and mouse miRNA expression values were
normalised to RNU6B and SnoRNA202, respectively.

Immunoblot and 3′ UTR luciferase activity assay
Cells were lysed using complete radioimmune precipitation
assay (RIPA) buffer supplemented with complete ULTRA
protease inhibitor cocktail tablets (Roche, Basel, Switzerland)
and sodium orthovanadate. Anti-Akt2, anti-phospho-Akt
(Thr308), anti-phospho-Akt (Ser473), anti-Pras40, anti-
phospho-Pras40 (Thr246), anti-Gsk3A, anti-phospho-Gsk3
(Ser21/9), anti-Tsc2, anti-phospho-Tsc2 (Thr1426), anti-
mTOR, anti-phospho-mTOR (Ser2448), anti-p70S6k1,
anti-phospho-p70S6k1 (Thr389), anti-p70S6K2, anti-4E-
BP1, anti-4E-BP1 (Thr37/46) (Cell Signalling Technology,
Danver, Massachusetts, USA) rabbit polyclonal antibodies
were used in immunoblotting. Luciferase constructs (pLight
Switch_3′UTR) (Switchgear genomics, Carlsbad, CA, USA)
containing the 3′ UTR region of Akt2, Pras40, Gsk3a, CSF1
and Itgb1 was individually transfected into HEK293T cells
using pGL4.12 (luc2CP) as a normaliser. Luciferase activity
was measured by using the dual luciferase assay (Promega).

Tumoursphere assays
MDA-MB-231 cells were cultured in serum-free RPMI
1640, supplemented with B27 (Invitrogen) and 20 ng/ml
bFGF (BD Biosciences, Franklin Lakes, NJ, USA), and 4
μg/ml heparin (Sigma Aldrich, St. Louis, MO, USA) and
plated at 15,000 viable cells/well in ultralow attachment
6-well plates (Corning Incorporate, NY, USA). Complete
serum-free medium was added to the cells every 3 days.
Primary tumourspheres were enumerated at day 10.
Primary tumourspheres were collected, and were enzy-
matically dissociated into single cells, re-plated in ultralow
attachment 6-well plates (Corning Incorporate) at a dens-
ity of 1,000 viable cells/well and enumerated at day 10.

Protein synthesis assay
Cells were washed twice and serum starved for 16–18 h
prior to EGF stimulation. Cells were stimulated with EGF
in serum-free DMEM low glucose without L-ARG, L-LEU,
L-LYS, sodium pyruvate and phenol red (Sigma Aldrich)
for 1 h: [3H]Leucine (PerkinElmer, Waltham, MA, USA)
was added at the same time as EGF to a final concentration
of 5 μCi/ml. Cells were washed three times in ice-cold
PBS, lysed using RIPA buffer followed by incubating cells
with 10 % trichloroacetic acid (TCA) for 10 minutes to
precipitate proteins. Pellets were washed three times
in 10 % TCA. Pellets were resuspended in 50 nM
NaOH with 1 % Triton X-100 at 65 °C for 30 minutes or
until the pellet dissolved. The radioactivity of samples was
assessed by measuring the scintillation count using the
β-scintillation counter. The results were normalised for
protein content using bicinchoninic acid (BCA) analysis.

Animal experiments
For primary tumour burden and spontaneous metastasis
assays, 1 × 106 MDA-MB-231 cells were injected into the
mammary fat pad of 8-week-old female NOD/SCID mice.
Mice were culled at the ethical end point, and primary tumour
and other organs such as lungs, spleen, lymph node, pancreas
and brain were harvested. Metastatic lesions were quantified
with a fluorescent microscope within 2 h of harvest.

Immunohistochemistry
Mouse tissues were extracted and fixed overnight at 4 °C in
10 % neutral-buffered formalin (Sigma), and stored in 70 %
ethanol at 4 °C. Subsequently, tissues were embedded in
paraffin and sectioned. Sections were stained with haema-
toxylin and eosin (H&E) and phospho-histone H3 (Cell
signaling) in accordance with standard protocols. Scoring
of phospho-Histone H3 immunostaining and mitotic fig-
ures was assessed by a specialist breast pathologist (SO’T).
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Gene expression analysis
MDA-MB-231 cells were transfected with miR-184 or
control mimics for 48 h before total RNA was extracted
using the modified Trizol reagent protocol with an add-
itional ethanol precipitation step. RNA samples were sent
off to the Ramaciotti Centre for Gene Function Analysis for
gene expression profiling using the affymetrix gene 1.0ST
array (Affymetrix) (University of New South Wales, Sydney,
Australia). Gene expression analysis was performed using
gene pattern.

Statistical analysis
Statistical analysis was performed by using GraphPad Prism
v6.0. T tests were performed to determine statistical signifi-
cance, unless otherwise stated. P <0.05 was considered
statistically significant.

Methylation analysis
The MBDCap-Seq experiment was performed by Dr
Claire Stirzaker and Dr Jenny Song (Garvan Institute
of Medical Research). Analysis of the results was per-
formed by Dr Elena Zotenko (Garvan Institute of Medical
Research). Briefly, methylated DNA was isolated using the
MethylMinerTM Methylated DNA Enrichment Kit
(Life Technologies). Genomic FFPET DNA was sonicated.
MBD-Biotin Protein (3.5 μg) was coupled to 10 μl of
Dynabeads M-280 Streptavidin according to the manufac-
turer’s instructions.
MBD biotin conjugated to the magnetic beads was

washed three times and resuspended in one volume
of 1 × bind/wash buffer. The capture reaction was
performed by adding 500 ng to 1 μg sonicated DNA
to the MBD-magnetic conjugates on a rotating mixer
for 1 h at room temperature (RT). All capture reactions
were done in duplicate. The beads were washed three
times with 1 × bind/wash buffer. The bound methylated
DNA was eluted using single high-salt elution buffer (2 M
NaCl). Eluted DNA fraction was concentrated by ethanol
precipitation using 1 μl glycogen (20 μg/μl), 1/10 volume
of 3 M sodium acetate, pH 5.2 and two sample volumes of
100 % ethanol, and resuspended in 60 μl water.

Preparation of MBDCap-Seq libraries and Illumina
sequencing
DNA, 10 ng, was prepared for Ilumina sequencing using
the Illumina ChIP-Seq DNA sample prep kit (Illumina,
San Diego, CA, USA) according to the manufacturer’s
instructions. The library preparation was analysed on
Agilent High Sensitivity DNA 1000 Chip. Each sample
was sequenced on one lane of the GA11x.

Alignment of MBDCap-Seq data
Sequenced reads were aligned to the hg18 version of the
human genome with bowtie [29]. Sequence reads with
three mismatches or more and reads mapping to
multiple positions were excluded. Last, multiple reads
mapping to exactly the same genomic coordinate
were eliminated and only one read was retained for
downstream analysis.

miRNA seed match analysis
The seed match analysis was performed as previously
described by Melton et al. [30]. Briefly, ensemble tran-
scripts (hg19) of promoter, 5′ UTR, open reading frame
(ORF) and 3′ UTRs and other annotated genes (hg19)
were obtained from the UCSC Genome Browser. Relevant
miRNA seed match (7mer-1A or 7mer-m8) was conducted
on those transcripts using a custom Python script
[30]. Results from seed match analysis were mapped
to Affymetrix IDs. Wilcoxon rank sum test was used
to determine the p values in this analysis.

Gene signature score and survival analysis
A stringent 18-gene signature repressed by miR-184
(fold-change >2, Table 2) was assessed for survival ana-
lysis using two independent cohorts from METABRIC
[31] and a cohort of women receiving neo-adjuvant
chemotherapy [32]. METABRIC gene expression data
were downloaded from the European Genome-Phenome
Archive (EGAS00000000083). Gene expression and
clinical data from Hatzis et al. were downloaded from
Gene Expression Omnibus (GEO) [GEO: GSE25066].
The gene signature score was defined by a weighted
average method [33] for each sample in the METAB-
RIC discovery cohort. Survival curves were estimated
using the Kaplan-Meier method, with overall survival
used as the outcome metric.

Results
Identification of microRNAs enriched in mammary cellular
compartments
We performed miRNA expression profiling on micro-
dissected stroma, mature ducts and TEBs of pubertal
5-week-old GFP+ mice to identify miRNAs involved
in mammary gland development (Fig. 1a). Each cellular
fraction expressed a set of unique microRNAs (Fig. 1b).
We identified a set of miRNAs that were specific to the
stroma, ducts, TEBs or both epithelial fractions (Fig. 1b;
Table 1). miR-31 was the most highly enriched miRNA
expressed in the TEBs, approximately 10.7-fold upregu-
lated versus ducts. When we performed unsupervised
hierarchical clustering (Fig. 1b), and miR-31 was tightly
clustered to several members of the proto-oncogenic miR
17–92 cluster, such as miR-17, miR-18a and miR-19a.
Conversely, miR-184 expression was significantly enriched
approximately 4.2-fold in the mature ducts compared to
the TEBs. Interestingly, miR-184, being the most highly
enriched miRNA in the mature ducts was clustered tightly
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to a subset of epithelial specific miRNAs, which included
members of the miR-183 family (miR-183, miR-96) and all
members of the miR-200 family (miR-141, miR-200a,
miR-200b, miR-200c and miR-429). We validated the
expression of miR-31, miR-184, miR-17 and miR-19a in
TEBs and ducts by quantitative RT-PCR (Fig. 1c).

miR-184 expression is attenuated in mouse models of
breast cancer and human breast cancer cell lines
To examine whether microRNAs differentially regulated
through morphogenesis are also deregulated in cancer,
we examined miRNA expression in four mouse tumour
models compared to normal total mammary epithelium:
spontaneous Tp53−/− tumours [34], transgenic C3 SV40 tag
model [35], transgenic MMTV-Neu [36] and transgenic
MMTV-PyMT [37]. There are several advantages of using
these tumour models: first, each tumour model has been
well characterised and the initiating oncogene that drives
tumourigenesis in these models is known. Second, each
tumour model has its matched normal counterpart as
a comparison. Last, these tumour models recapitulate
different subtypes of human breast cancer.
miR-31 was highly expressed in all of the murine

tumours when compared to the normal murine mammary
epithelial cells (Additional file 1: Figure S1D). In contrast,
the expression of miR-184 was almost abrogated in the



Table 1 Candidate microRNAs enriched in the terminal end buds (TEBs) or mature ducts, ranked by fold change

Rank Upregulated microRNA candidate microRNA family Q value Fold change (TEB/duct)

1 TEB mmu-miR-31 miR-31 0.009 10.76

2 TEB mmu-miR-17* miR-17 0.019 7.81

3 TEB mmu-miR-18a miR-17 0.005 4.72

4 TEB mmu-miR-362-5p miR-362 0.027 4.62

5 TEB mmu-miR-19a miR-17 0.007 3.27

1 Duct mmu-miR-184 miR-184 0.01 0.24

2 Duct mmu-miR-7 g* Let-7 0.028 0.3

3 Duct mmu-miR-1894-5p miR-1894 0.027 0.37

4 Duct mmu-miR-346 miR-346 0.021 0.39

5 Duct mmu-miR-328 miR-328 0.024 0.41
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Tp53−/− tumours and the MMTV-Neu tumours, how-
ever, miR-184 expression in the C3 SV40 Tag and
MMTV-PyMT tumours was comparable to normal
mammary epithelial cells suggesting that miR-184
might be specifically silenced in certain breast cancers or
that they derive from different cells of origin (Fig. 2a). In
addition, we also examined miR-17 and miR-19a, in
these murine tumours. Despite the known role of this
microRNA cluster in oncogenesis, there was no en-
richment of these two miRNAs in murine tumours
when compared to the normal mammary epithelial cells
(Additional file 1: Figure S1E, F).
We interrogated the relative expression of miR-31,

miR-184, miR-17 and miR-19a in a panel of human
breast cancer cell lines. Seven basal breast cancer cell
lines comprising both basal A and basal B and five
luminal cell lines were chosen to represent these
breast cancer subtypes [38]. The expression of miR-31
was restricted to the basal breast cancer cell lines
compared to the luminal cell lines (Additional file 1:
Figure S1A). miR-17 and miR-19a were relatively
evenly expressed across cell lines (Additional file 1:
Figure S1B, C). Conversely, the expression of miR-184
was undetectable in a majority of cell lines with the
exception of MDA-MB-175 (Fig. 2b).

miR-184 suppresses proliferation of human breast cancer
cell lines in two-dimensional and suspension culture
To elucidate its function in cancer, miR-184 was acutely
overexpressed in highly proliferative human breast cancer
cell lines: MDA-MB-231, BT-549, MDA-MB-436 and
HS578T, which express undetectable levels of endogenous
levels of miR-184. Let-7a is a well-characterised
tumour suppressor miRNA and has been shown to
impede proliferation in cancer cell lines, and hence,
was used as a positive control in this experiment. The
exogenous overexpression of miR-184 resulted in levels
comparable to the endogenous levels of miR-184 detected
in the MDA-MB-175 (not shown). miR-184 inhibited cell
proliferation significantly in all four models (Fig. 2c, d,
Additional file 1: Figure S1G). The positive control let-7a
also exhibited an anti-proliferative effect, which was of a
similar magnitude to the result obtained with miR-184
(Fig. 2c, d).
Given the increase in expression of miR-184 as mam-

mary epithelia differentiated in vivo, we asked whether
ectopic miR-184 expression regulates the self-renewal
capacity of breast cancer cells. Tumoursphere assays
[39] were performed in MDA-MB-231 cells constitutively
overexpressing miR-184. This assay requires cells to be in
cultured in suspension for an extended period, therefore,
miR-184 was overexpressed via retroviral transduction.
MDA-MB-231 cells overexpressing miR-184 had a 50 %
reduction in tumoursphere-forming potential in primary
tumourspheres as well as in secondary tumourspheres
when compared to the negative control (Fig. 2e).

miR-184 suppresses tumour initiation and proliferation
in vivo
After ascertaining the inhibitory effect of miR-184 on
proliferation and self-renewal in vitro, we wanted to
examine the role of miR-184 in vivo. Control and miR-184
overexpressing MDA-MB-231 cells were separately injected
into the mammary fat pad of cohorts of immunocomprom-
ised NOD/SCID mice (n = 5). At 10 weeks post transplant-
ation, primary tumours and internal organs were harvested.
All the mice in the control group developed solid tumours,
however, in stark contrast, none of the mice within the
miR-184 cohort had developed any palpable tumours at this
time point (Fig. 2f). Under detailed visual examination of
the miR-184 cohort by fluorescent microscopy, a small
population of GFP+ cells could be detected in the mam-
mary gland. H&E staining identified a bolus of miR-184
overexpressing cells localised to the injection site (Fig. 2g).
These results suggested that cells overexpressing miR-184
have impaired proliferation in vivo.
We performed immunohistochemical staining on the

tumour sections for phospho-histone H3 and scoring for
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Fig. 2 Expression of miR-184 is lost in cancer models. Ectopic expression suppresses proliferation and self-renewal in vitro and in vivo.
a miR-184 expression is lost in several mouse models of breast cancer, compared to total mouse mammary epithelium. microRNA expression
was normalised to SnoRNA202. b miR-184 is undetectable in a majority of human breast cancer cell lines. microRNA expression is normalised to
RNU6. c MDA-MB-231 were transfected with microRNA mimics, proliferation was measured for 5 days by MTS assay. d BT-549 were transfected
with microRNA mimics, proliferation was measured for 5 days using MTS assay. c, d Results are expressed as mean + standard error from three
independent experiments performed in sextuple technical replicates. The t test was performed: *p <0.05 indicates significant difference in
proliferation in cells overexpressing miR-184 compared with non-targeting miRNA control. e MDA-MB-231 stably overexpressing miR-184 and
control were cultured in low adherent plates and enumerated for primary and secondary tumourspheres. The t test was performed: *p <0.05
indicates significant difference in tumoursphere-forming potential in cells overexpressing miR-184 compared to control. f Tumour mass in
NOD/SCID mice (n = 5) after injection of MDA-MB-231 constitutively overexpressing miR-184, let-7a or negative control into the mammary
fat pad. g Haematoxylin and eosin (H&E) (top) and phospho-histone H3 (bottom) immunohistochemical analysis. Circle identifies focus of
MDA-MB-231 cells at the injection site. Top scale bars = 50 μM, bottom scale bars = 30 μM. h Quantitation of phospho-histone H3 immunoreactivity
and mitotic figures in tumour sections. The t test was performed: *p <0.05 indicates significant difference in positive phospho-histone H3 expression
and mitotic figures in miR-184 cohort compared to control cohort. HER2 human epithelial growth factor receptor 2, neg negative
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mitotic figures, both of which measure actively dividing
cells. A significantly lower proportion of cells overex-
pressing miR-184 were positive for phospho-histone H3
positive cells and mitotic figures compared to the
control group (Fig. 2h), confirming the suppression of
proliferation by miR-184.

miR-184 expression prolongs survival and reduces
metastatic burden
We conducted a survival experiment to ascertain if
miR-184 expression extended survival. Mice were trans-
planted with MDA-MB-231 cells expressing miR-184,
Let-7a or negative control and aged to ethical endpoint.
The control group developed palpable tumours as early as
24 days post transplantation, and these tumours propagated
at a faster rate when compared to the miR-184 group
(Fig. 3a). In contrast, there was delayed latency in tumour
growth in the miR-184 group where mean time to tumour
palpation was by day 38. This delay in tumour initiation
was also observed in the let-7a cohort and translated to an
increase in overall survival. This result suggests that
miR-184 impedes tumour initiation and growth.
Lastly, we also examined if miR-184 could reduce

metastatic burden in vivo. Visual examination and quan-
tification by fluorescence microscopy at ethical endpoint
was used to identify macroscopic metastases in the lung
and pancreas, the most frequent sites of metastasis in
this model. The majority of control mice developed
multiple metastases in the lungs and pancreas. In
contrast, only approximately 20 % of mice within the
miR-184 cohort developed any metastatic lesions in the
lung (p = 0.06) (Fig. 3b). In addition, we also observed a
similar reduction in metastatic burden in the pancreas,
where only 10 % of mice from the miR-184 cohort
developed any pancreatic metastases (Fig. 3c).

Regulatory targets of miR-184
Next, we aimed to identify the repertoire of miR-184 tar-
gets to explain the impact of miR-184 on proliferation. We
capitalised on the evidence that miRNAs can destabilise
the mRNA of their targets to use a gene-expression-
based approach to target identification [40]. We trans-
fected miR-184 or control microRNA mimics into
MDA-MB-231 breast cancer cells and analysed global
gene expression changes compared to controls by
affymetrix gene arrays.
We observed 1,263 mRNAs and 592 mRNAs that were

significantly upregulated and downregulated respectively
in cells overexpressing miR-184 compared with the
negative control, suggesting dramatic remodelling of
gene expression by miR-184 expression. From the profiling
data, we filtered and identified the top miR-184 repressed
mRNA targets based on their fold change (Table 2).
AKT1S1, more commonly termed PRAS40 was the most
significantly downregulated gene with approximately
3.1-fold change, followed by LAT1, which was repressed
approximately 2.7-fold. To identify direct targets of
miR-184 from the profiling data, we adopted a compre-
hensive seed match analysis method previously described
by Melton et al. [30], which interrogates the promoter,
5′ UTR, CDS and 3′ UTRs of transcripts downregulated
following microRNA overexpression for the presence of
miR-184 seed matches. The analysis revealed highly
significant enrichment of miR-184 seed matches within
the 5′ UTR and 3′ UTR regions of the downregulated
transcripts, suggesting that miR-184 modulates its targets
by targeting the UTRs (Fig. 4a). We did not observe any
significant enrichment of miR-184 seed regions within the
upregulated genes, suggesting that this method identifies
bone fide direct targets.
Of the 557 downregulated genes, 193 of the genes

possessed a miR-184 seed match in the UTR; of these
193 genes, 135 of them had a miR-184 seed match
only in the 3′ UTR, 30 genes contained a miR-184
seed match only in the 5′ UTR and 23 genes pos-
sessed a miR-184 seed region in both the 3′ and 5′
UTR. The remaining genes contained miR-184 binding
sites in either the CDS and/or UTRs. We asked
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whether the number of miR-184 seed matches within
the downregulated genes correlated with a greater degree
of repression. Interestingly, in contrast to previous studies
[41, 42], we observed no additive or synergistic effect on
mRNA destabilisation when multiple seed matches were
detected (Additional file 2: Figure S2A). We also saw no
added enrichment in repression when there was mul-
tiple miR-184 seed match regions located only in the



Table 2 Top 30 genes significantly repressed by miR-184
(Q <0.05)

Genes Fold change Q value

PRAS40 3.1092 0.0000887

SLC7A5 2.7426 0.0001686

CSF1 2.5244 0.00004997

RRP1B 2.3603 0.00006787

SEMA7A 2.3251 0.0013856

ADAM19 2.3148 0.00003501

TNFSF18 2.3009 0.0005973

CARM1 2.2891 0.00004997

POM121 2.2415 0.00006787

SH3GL1 2.2386 0.00003501

S100A16 2.2311 0.00003501

KLC2 2.2168 0.00003501

PPAP2B 2.1852 0.00007764

PLBD2 2.1415 0.00003501

CYB5R3 2.0392 0.00006787

LASP1 2.0308 0.00003501

PPP6R1 2.0175 0.00003501

CDC25A 2.0013 0.0004932

PNO1 1.9322 0.0011347

HAS2 1.9214 0.0014053

SEPT9 1.9143 0.0001192

MYADM 1.9084 0.0001448

PLAGL2 1.9068 0.00019

GSK3A 1.902 0.00006787

AKT2 1.9014 0.00004997

REXO1 1.8962 0.0004027

FSCN1 1.8733 0.0004771

STK40 1.8697 0.00008406

IL7R 1.8555 0.0064985

TMEM45A 1.8489 0.0064985
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3′ UTR (Additional file 2: Figure S2B) or the 5′ UTR
(Additional file 2: Figure S2C) or in both the 3′ and
5′ UTR (Additional file 2: Figure S2D). Genes with
miR-184 seed match in their 3′ UTR were also signifi-
cantly more downregulated compared to those with a
miR-184 seed match in the 5′ UTR (Fig. 4c). These data
indicate that miR-184 represses many of its mRNA targets
by targeting the 3′ UTR and that the number of miR-184
binding sites within the 3′ UTR does not correlate with
degree of mRNA destabilisation.
Our analysis of putative direct targets identified at least

158 targets that are repressed and contain a 3′ UTR seed
match. To look for functional relationships between these
putative targets, we applied gene set enrichment analysis
(GSEA) [43]. There was an enrichment of genes involved
in oxidative stress, PI3K/AKT signalling, apoptosis via
NFKB and axon repulsion (Additional file 2: Figure S2E).
We focused on the PI3K/AKT pathway for two reasons.
First, AKT2 has been shown to be an miR-184 direct tar-
get in neuroblastoma [44]. Second, AKT signalling is often
dysregulated in breast cancer and AKT2 has been identi-
fied as a driver gene in mammary tumourigenesis [45].
Within the PI3K/AKT gene list, there was core enrich-

ment for several genes from our profiling data (marked
as yes under the core enrichment column), suggesting
that the differential expression of these genes was signifi-
cant (Additional file 3: Table S1). AKT2, PRAS40 and
GSK3A were immunoblotted to validate the microarray
result. There was a marked reduction in the total protein
expression of AKT2, PRAS40 and GSK3A when miR-184
was overexpressed (Fig. 4d). In order to ascertain whether
these genes were targets of miR-184, HEK293T cells were
transfected with miR-184 or negative control in com-
bination with 3′ UTR luciferase reporters for CSF1,
GSK3A, AKT2 or PRAS40 in addition to ITGB1 (used
as a negative control) and a construct containing perfect
matches to the miR-184 sequence as a positive control
(PMR). There was no repression in the luciferase activity of
ITGB1 and a near complete ablation in luciferase activity
of the PMR. We observed robust repression (>50 %) in the
luciferase activity of reporters carrying the 3′ UTR from
CSF1, GSK3A, AKT2 and PRAS40 signifying that miR-184
expression can act via the 3′ UTR to destabilise the mRNA
of these targets (Fig. 4e).

miR-184 targets AKT/mTOR protein synthesis pathway
AKT is a central node for orchestrating myriad pro-survival
and proliferative pathways in oncogenesis [46]. One such
downstream effector pathway is the mTOR signalling
cascade. The mTOR pathway consists of two mTOR
complexes, mTORC1 and mTORC2. The mTORC1 com-
plex comprises RAPTOR, mLST8 and PRAS40 and when
activated, initiates cell growth, proliferation and protein
synthesis by regulating S6K1 and 4E-BP1 [47]. From the
GSEA, there was enrichment for targets genes such as
TSC2, RPS6KB2, implicated in mTORC1 mediated protein
synthesis in cells overexpressing miR-184, and hence, we
asked if miR-184 could be an important regulator of
AKT/mTORC1 protein synthesis pathway.
We transfected MDA-MB-231 cells with miR-184

mimics, serum starved them and stimulated the cells with
EGF, which is known to initiate a cascade of signalling
events to promote cell proliferation, growth and survival.
As expected, there was a marked decrease in total AKT2
and PRAS40 expression in cells overexpressing miR-184
and no change in the total protein expression of AKT1 and
AKT3. Interestingly, miR-184 also decreased the total pro-
tein expression of mTOR (Additional file 4: Figure S3A).
In control cells treated with EGF, we observed activation of
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AKT as both Ser473 and Thr308 were phosphorylated
(Fig. 5a). In return, activated AKT inhibited the activities
of TSC2 and PRAS40 through phosphorylating them at
Thr1462 and Thr246 respectively (Fig. 5a), thus initiating
the activation of mTORC1. Conversely when cells overex-
pressing miR-184 were treated with EGF, we observed a
modest increase in p-AKT Thr308, indicating that there
was increased AKT activity. Despite the increased AKT
activity, the inhibition on TSC2 was completely abrogated,
as observed from the dephosphorylation of Thr1462,
possibly by miR-184 targeting AKT2. Finally the activating
phosphorylation of S6K1 at Threonine-389, a rate-limiting
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factor in protein synthesis, was attenuated without affecting
the activity of 4E-BP1 (Additional file 4: Figure S3A).
We also further examined if this miR-184-regulated

signalling cascade was recapitulated in vivo. Within the
cohort of mice bearing miR-184-overexpressing tumour
cells, the expressions of a number of miR-184 targets
(e.g., AKT2, GSK3A and S6K2) were reduced in three
out of four mice when compared to the control tumours.
Furthermore, we also observed a dramatic repression of
mTOR expression accompanied by the dephosphorylation
of S6K1 indicating a partial attenuation of the protein
synthesis pathway (Additional file 4: Figure S3B).
To directly assay the impact of EGF stimulation and

miR-184 expression on protein synthesis, we transfected
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MDA-MB-231 cells with the miR-184 mimics, and
measured the amount of protein synthesised in the
cell by incorporating radiolabelled tritiated (H3) leucine
into cells in the presence of EGF. miR-184 repressed
global protein synthesis dramatically (Fig. 5b). In order to
demonstrate that this regulatory phenomenon exhibited
by miR-184 was not restricted to the MDA-MB-231
model, we performed the same assay with the HEK293E
cells using another growth factor, insulin. We detected
that miR-184 similarly repressed global protein synthesis
by approximately 30 % in the HEK293E cells stimulated
with insulin (Fig. 5c).

Overexpression of AKT2, PRAS40 or GSK3A does not
rescue miR-184 repression of protein synthesis
We were interested to see if we could reverse the repres-
sion on protein synthesis by overexpressing some of the
core enriched top candidate genes identified from the
GSEA. Therefore we tested if direct targets AKT2, PRAS40
or GSK3A were responsible for the effect of miR-184 on
MDA-MB-231 cell protein synthesis by stably overex-
pressing AKT2, PRAS40 and GSK3A individually or
in combination, together with transfection of miR-184 or
negative control mimics. Despite the overexpression of
these direct target genes individually (Additional file 5:
Figure S4A, B, C) or in combination (Fig. 5d, e), protein
synthesis was nonetheless suppressed by miR-184 expres-
sion in these cell lines. These results suggest that miR-184
regulates the protein synthesis process by modulating
expression of genes in addition to AKT2, PRAS40 and
GSK3A.

miR-184 expression and prognostic significance in
breast cancer
We next investigated the significance of miR-184 expres-
sion in breast cancer and its association with clinico-
pathological measures. We measured miR-184 expression
in snap-frozen primary tumour specimens comprising
patient samples diagnosed with luminal, HER2-amplified
and triple negative cancers and matched normal tissue. We
observed unique expression patterns for miR-184 across
these subtypes. There were no significant differences in the
expression of miR-184 between luminal cancers and
matched normal. However within the HER2 subtype, the
patients fell into two groups: normal-like and high
miR-184 expression. Last, miR-184 expression was
significantly lower in the triple negative subtype compared
to the matched normal (Fig. 6a). To verify this result in a
bigger patient cohort, we analysed miR-184 expression in
the METABRIC cohort of 980 breast cancers [31] and also
observed that miR-184 mean expression was highest in
HER2-positive breast cancers and significantly lower in
basal breast cancers, a subset of TNBC (Fig. 6b). In this
cohort, miR-184 expression did not correlate with
prognosis (data not shown). However, elevated expression
of a signature composed of high-confidence direct targets
of miR-184 predicted poor overall survival (Fig. 6c). This
effect was observed in two further independent co-
horts (Additional file 6: Figure S5). In multivariate
analysis, this signature predicted poor prognosis inde-
pendent of ER status in two out of three cohorts
(Additional file 7: Table S2). These data are consistent
with a role for miR-184 in suppressing proliferation or
metastatic dissemination.

miR-184 is epigentically silenced in human cancers
There is emerging evidence for epigenetic silencing by
hypermethylation [48] of miRNAs with tumour suppressor
properties or growth inhibitory functions in various
malignancies [49–52]. Methyl-capture sequencing was
performed to capture a global snapshot of the genome-
wide DNA methylation profile of normal mammary tissue,
primary TNBC tumours and matched metastatic tumours
micro-dissected from the lymph nodes of patients. We
observed that there was minimal methylation detected at
the miR-184 locus in normal breast tissue. In contrast,
there was a pronounced increase in methylation in
metastatic tumours in the lymph nodes of three of
eight patients (Fig. 6d), suggesting a selective pressure
to silence miR-184 during metastatic dissemination,
consistent with the capacity of miR-184 to suppress
metastasis in animal models (Fig. 3).

Discussion
In our study, we have discovered miRNAs enriched in
different subcellular compartments of the developing
mammary ductal structure. These results suggest that
some miRNAs are expressed in specific subcellular
compartments, such as the TEBs and mature ducts,
to modulate cellular processes such as proliferation
and differentiation during ductal elongation. We then
asked, however, if these miRNAs were differentially
expressed and functional in cancer. As a proof of concept,
we found TEB-enriched miRNAs to be highly expressed
in a panel of breast cancer models whereas miRNAs
enriched in the ducts displayed an opposite trend, being
lowly expressed in cancer.
One of the miRNAs that followed this expression

pattern was miR-184. Upon functional characterisation,
there was compelling evidence to suggest that miR-184 is
a tumour suppressor in certain cancer subtypes, as it
suppressed cell proliferation and self-renewal in vitro
and tumour growth in the primary and distant sites.
A role in modulating metastasis is supported by analysis
of a subset of TNBC patient samples, where miR-184
was epigenetically silenced in lymph node metastases,
suggesting silencing of miR-184 can promote meta-
static dissemination. Upon interrogating a large breast
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Fig. 6 miR-184 is downregulated in triple negative breast cancer, methylated in metastatic lesions and reduced expression of stringent miR-184
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triple negative and matched normal tissue. The t test was performed: *p <0.05, **p <0.01. b Analysis of miR-184 expression in the Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC) patient cohort stratified by intrinsic subtype: p <1 × 10−18. c Kaplan-Meier
survival analysis comparing the outcome of METABRIC patients stratified by signature score of miR-184 repressed targets (red, samples with top
25 % signature score (n = 246); blue, samples with bottom 75 % signature score (n = 734)). Overall survival was used as the outcome metric.
d The miR-184 locus is hypermethylated in some metastatic lymph node biopsies (LN) when compared to primary tumour (T) and normal breast
tissue (N). SssI MBD2IP (red) has been treated with methylase and acts as a positive control for methylation at this locus

Phua et al. Breast Cancer Research  (2015) 17:83 Page 14 of 18
cancer cohort (METABRIC) dataset, we also observed
a significant decrease in miR-184 expression in the
ER-negative tumours compared to the ER-positive tumours.
In this cohort, very few microRNAs associate with
prognosis [53], as we found for miR-184. However,
elevated expression of high-confidence targets repressed
by miR-184 predicted poor prognosis, consistent with our
evidence from animal models that elevated miR-184
activity improves outcome.
miR-184 is crucial in regulating certain developmental
processes such as the differentiation of neural stem
cells, germ line cells and corneal epithelial cells [54–56].
Several studies have established that miR-184 is lowly
expressed in different malignancies such as child-
hood neuroblastoma, brain cancers, clear cell renal
cell carcinoma and prostate cancer [44, 57–60].
When miR-184 was ectopically overexpressed in vitro, it
resulted in cell cycle arrest and apoptosis [44, 57, 58],
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as well as impeding neuroblastoma xenograft forma-
tion resulting in longer survival in vivo [61]. Though
several downstream targets of miR-184 such as AKT2,
NUMBL, SHIP2, NFAT1 have been identified in different
cell types, nevertheless there have been no definite reports
on the functional role of miR-184 in breast cancer nor de-
tailed analysis of signalling pathways that are potentially
modulated by miR-184 [44, 54, 62, 63].
miR-184 has been previously shown to be controlled

by epigenetic mechanisms in development. This was
identified in the mouse brain, where the genomic region
proximal to the miR-184 locus in adult neural stem cells
contains CpG rich sequences instead of canonical CpG
islands. Methyl-CpG binding protein 1 (Mbd1) binds to
these CpG-rich sequences in the genomic regions sur-
rounding miR-184, and represses the transcriptional
activity of miR-184 [54]. In a separate study, researchers
performed bisulphite sequencing on umbilical cord blood
graft CD4+ T cells and discovered a small putative
CpG island just upstream of the miR-184 locus, and
an additional 32 CpG sites present within the adja-
cent regions of the miR-184 locus making it an ideal
target for epigenetic silencing [63].
We are the first to provide evidence to suggest that

the attenuated expression of miR-184 in cancer is poten-
tially a result of epigenetic mechanisms. miR-184 was
methylated in a subset of lymph node metastases in
TNBC, providing supportive evidence that miR-184
may play a role as a novel mammary tumour suppres-
sor. We hypothesised that the methylation of miR184
in metastatic tissue suggests a selective pressure against
maintenance of miR-184 particularly during metastatic
dissemination.
Our experimental evidence suggests that the anti-

tumourigenic properties displayed by miR-184 are a
consequence of miR-184 inhibiting the activity of the
PI3K/AKT/mTORC1 pathway, therefore limiting pro-
tein synthesis. This study suggests that miR-184 sup-
presses the protein synthesis pathway by targeting
several important members of the AKT/mTOR path-
way. miR-184 represses the total levels of AKT2,
which relieves the inhibitory function on TSC2, the
crucial negative regulator of the mTORC1 pathway.
In addition, the reactivation of TSC2 results in the
abrogation of S6K1 activity, the effector of the protein
synthesis pathway.
Furthermore, this signalling event was partially reca-

pitulated in vivo, where miR-184 repressed several sub-
strates within the AKT/mTORC1 pathway in a majority
of tumours. The total expression of mTOR was reduced
in the miR-184 cohort, potentially inhibited the forma-
tion of the mTORC1 and therefore reducing the activity
of S6K1. Interestingly, we also observed a loss of TSC2
expression and an increase in PRAS40 expression in the
miR-184 cohort. It is possible that these changes are
compensation to circumvent the anti-proliferative effects
of miR-184 during tumour progression.
These changes in the signalling pathway correlate with

our protein synthesis assay, where we observe less synthe-
sised proteins in cells overexpressing miR-184. However,
we do not fully comprehend how miR-184 suppresses
protein synthesis. Despite the overexpression of AKT2,
PRAS40 and GSK3A in combination, we were unable to
rescue the miR-184 mediated suppression of protein
synthesis and hence more work needs to be conducted to
define the rate limiting targets in protein synthesis and
proliferation downstream of miR-184.
Several other targets may explain this phenotype. S6K2,

a member of 40S ribosomal protein S6 kinase family was
also repressed by miR-184 at the mRNA and protein level.
The 40S ribosomal S6 kinase is a direct substrate of
mTORC1 signalling, and when activated it drives cell
growth and proliferation by recruiting translational
machineries and initiating protein production in cells
[64]. Even though S6K2 is homologous to S6K1, sharing
83 % identical amino acid sequences, they both display
unique functions [65, 66].
CSF1 and LAT1 were also significantly repressed

when miR-184 was overexpressed. Evidence in the lit-
erature associates both genes with promoting tumouri-
genesis and metastasis [67–77]. LAT1 also plays an
important role in transporting available amino acids into
the cell for protein synthesis, which provides a possible
explanation for the inability to revert the defect in protein
synthesis even by the overexpression of AKT2, PRAS40
and GSK3A.
As the PI3K/AKT/mTOR axis is such a crucial signalling

axis in mediating a myriad of cellular functions essential in
both normal development and during carcinogenesis,
many research groups have focussed on elucidating the
convoluted regulation of these pathways. In recent
years, studies have revealed that there is a landscape
of microRNAs that specifically regulate various compo-
nents of the PI3K/AKT/mTOR signalling axis in orches-
trating a series of fundamental cellular processes in
normal development; including stem cell expansion [78],
wound healing [79] and smooth muscle and pancreatic
beta cell proliferation [80, 81].

Conclusions
We propose that miR-184 mimics the role of a capacitor
to control signalling current through the PI3K-mTOR
pathway in the presence of a stimulus by targeting inter-
mediates of the AKT/mTOR cascade and in turn tuning
the signalling output. Integration of miR-184 expression
and activity in PI3K-AKT-mTOR pathway analysis may
help better predict pathway dynamics and response to
therapeutics targeting this pathway.
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Additional files

Additional file 1: Figure S1. Validation of differential microRNA
expression and additional human cell line transfections. miR-31 (A),
miR-17 (B) and miR-19a (C) expression in a panel of breast cancer cell
lines. microRNA expression was normalised to RNU6. miR-31 (D), miR-17
(E), and miR-19a (F) expression in murine tumour models. microRNA
expression was normalised to SnoRNA202 (G0 miR-184 suppresses
proliferation in MDA-MB-436 and HS578T cells in vitro. Graphs depict the
mean +/− standard error of the mean of three independent experiments;
*p <0.05.

Additional file 2: Figure S2. MicroRNA target identification. A Total
number of miR-184 seed matches in the promoter, 5′ UTR, open reading
frame (ORF) and 3′ UTR of downregulated transcripts. B Total number of
miR-184 seed matches present only in the 3′ UTR of downregulated
transcripts. C Total number of miR-184 seed matches present only in the
5′UTR of downregulated transcripts. D Total number of miR-184 seed
matches present only in both 3′ and 5′ UTR of downregulated transcripts.
E Gene set enrichment analysis of miR-184. Enrichment plots and statistics
are shown for the nine most significantly (false discovery rate <0.05)
downregulated gene sets involved in oxidative stress, trabectedin resistance,
PI3K/AKT, apoptosis via NFKB, and axon repulsion.

Additional file 3: Table S1. miR-184 modulates the activity of a
number of gene targets within the PI3K/AKT pathway. Core enrichment
of gene targets potentially regulated by miR-184 is represented by Yes
under the core enrichment column.

Additional file 4: Figure S3. miR-184 suppresses protein synthesis
by negatively regulating certain substrates in AKT/mTORC1 pathway.
A Immunoblots of members of AKT/mTOR pathway in MDA-MB-231
transfected with miR-184 mimics and treated with and without epidermal
growth factor (EGF). B Immunoblots of members of AKT/mTOR pathway
in primary tumour lysates derived from xenografts of mDA-MB-231 cells
overexpressing miR-184 or control, harvested at ethical end point.

Additional file 5: Figure S4. Overexpression of miR-184 direct targets
does not rescue the suppression of protein synthesis. Measurement of
protein synthesis by using B-scintillation in MDA-MB-231 cells overexpressing
AKT2 (A), PRAS40 (B), GSK3A (C) or in combination transfected with
negative control or miR-184 mimics for 24 h, serum starved and treated
with labelled H3 leucine in the absence and presence of epidermal
growth factor (EGF).

Additional file 6: Figure S5. Reduced expression of stringent miR-184
targets correlates with poor overall survival in two independent cohorts
of breast cancer patients. Kaplan-Meier survival analysis comparing outcome
of patients stratified by signature score of miR-184 repressed targets.
Red: samples with top 25 % signature score; blue: samples with bottom
75 % signature score. Overall survival was used as the outcome metric. A
Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
validation cohort (n = 248 (red), n = 745 (blue). B Cohort from Hatzis et al.
[31], n = 128 (red), n = 380 (blue).

Additional file 7: Table S2. Univariate and multivariate analysis of
prognostic associations for miR184 signature.
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