5,218 research outputs found
Semiparametric Multivariate Accelerated Failure Time Model with Generalized Estimating Equations
The semiparametric accelerated failure time model is not as widely used as
the Cox relative risk model mainly due to computational difficulties. Recent
developments in least squares estimation and induced smoothing estimating
equations provide promising tools to make the accelerate failure time models
more attractive in practice. For semiparametric multivariate accelerated
failure time models, we propose a generalized estimating equation approach to
account for the multivariate dependence through working correlation structures.
The marginal error distributions can be either identical as in sequential event
settings or different as in parallel event settings. Some regression
coefficients can be shared across margins as needed. The initial estimator is a
rank-based estimator with Gehan's weight, but obtained from an induced
smoothing approach with computation ease. The resulting estimator is consistent
and asymptotically normal, with a variance estimated through a multiplier
resampling method. In a simulation study, our estimator was up to three times
as efficient as the initial estimator, especially with stronger multivariate
dependence and heavier censoring percentage. Two real examples demonstrate the
utility of the proposed method
Urban energy consumption and CO2 emissions in Beijing: current and future
This paper calculates the energy consumption and CO2 emissions of Beijing over 2005–2011 in light of the Beijing’s energy balance table and the carbon emission coefficients of IPCC. Furthermore, based on a series of energy conservation planning program issued in Beijing, the Long-range Energy Alternatives Planning System (LEAP)-BJ model is developed to study the energy consumption and CO2 emissions of Beijing’s six end-use sectors and the energy conversion sector over 2012–2030 under the BAU scenario and POL scenario. Some results are found in this research: (1) During 2005–2011, the energy consumption kept increasing, while the total CO2 emissions fluctuated obviously in 2008 and 2011. The energy structure and the industrial structure have been optimized to a certain extent. (2) If the policies are completely implemented, the POL scenario is projected to save 21.36 and 35.37 % of the total energy consumption and CO2 emissions than the BAU scenario during 2012 and 2030. (3) The POL scenario presents a more optimized energy structure compared with the BAU scenario, with the decrease of coal consumption and the increase of natural gas consumption. (4) The commerce and service sector and the energy conversion sector will become the largest contributor to energy consumption and CO2 emissions, respectively. The transport sector and the industrial sector are the two most potential sectors in energy savings and carbon reduction. In terms of subscenarios, the energy conservation in transport (TEC) is the most effective one. (5) The macroparameters, such as the GDP growth rate and the industrial structure, have great influence on the urban energy consumption and carbon emissions
GIVE: portable genome browsers for personal websites.
Growing popularity and diversity of genomic data demand portable and versatile genome browsers. Here, we present an open source programming library called GIVE that facilitates the creation of personalized genome browsers without requiring a system administrator. By inserting HTML tags, one can add to a personal webpage interactive visualization of multiple types of genomics data, including genome annotation, "linear" quantitative data, and genome interaction data. GIVE includes a graphical interface called HUG (HTML Universal Generator) that automatically generates HTML code for displaying user chosen data, which can be copy-pasted into user's personal website or saved and shared with collaborators. GIVE is available at: https://www.givengine.org/
Insufficient activity of MAPK pathway is a key monitor of Kidney-Yang Deficiency Syndrome.
OBJECTIVE: To explore the genetic characteristics and molecular regulator of Kidney-Yang Deficiency Syndrome (KDS). DESIGN: A typical KDS family was collected using a questionnaire of cold feeling and a 40-item scoring table of KDS based on Traditional Chinese Medicine (TCM), by single-blind method repeated annually over three years. Their transcriptomes were assayed by microarray and validated by RT-PCR and ELISA. Simultaneously, 10 healthy volunteers were recruited as controls and the same protocols were performed. RESULTS: This typical KDS family has 35 members, of whom 11 were evaluated as having severe KDS and 6 as having common KDS. Results of the cDNA microarray revealed that there were 420 genes/expressed sequence tags differentially expressed in KDS transcriptomes, indicating a global functional impairment in the mass-energy-information carrying network of KDS patients, involving energy metabolism, signal transduction, development, cell cycle, and immunity. Pathway analysis by gene set enrichment assay (GSEA) and other tools demonstrated that mitogenic activated protein kinase (MAPK) is among the most insufficiently activated pathways, while the oxidative phosphorylation and glycolysis/gluconeogenesis pathways, the two main pathways relevant to ATP synthesis, were among the most excessively activated pathways in KDS patients. Results of RT-PCR and ELISA confirmed the status of insufficient activity of the MAPK pathway. CONCLUSION: KDS patients undergo overall attenuated functions in the mass-energy-information carrying network. The marked low level of energy output in KDS may be primarily attributed to the insufficient activity of the MAPK pathway, which may be a key monitor for the abnormal energy metabolism and other impaired activities in KDS.published_or_final_versio
Interplay between pleiotropy and secondary selection determines rise and fall of mutators in stress response
Dramatic rise of mutators has been found to accompany adaptation of bacteria
in response to many kinds of stress. Two views on the evolutionary origin of
this phenomenon emerged: the pleiotropic hypothesis positing that it is a
byproduct of environmental stress or other specific stress response mechanisms
and the second order selection which states that mutators hitchhike to fixation
with unrelated beneficial alleles. Conventional population genetics models
could not fully resolve this controversy because they are based on certain
assumptions about fitness landscape. Here we address this problem using a
microscopic multiscale model, which couples physically realistic molecular
descriptions of proteins and their interactions with population genetics of
carrier organisms without assuming any a priori fitness landscape. We found
that both pleiotropy and second order selection play a crucial role at
different stages of adaptation: the supply of mutators is provided through
destabilization of error correction complexes or fluctuations of production
levels of prototypic mismatch repair proteins (pleiotropic effects), while rise
and fixation of mutators occur when there is a sufficient supply of beneficial
mutations in replication-controlling genes. This general mechanism assures a
robust and reliable adaptation of organisms to unforeseen challenges. This
study highlights physical principles underlying physical biological mechanisms
of stress response and adaptation
From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions
©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein
Early star-forming galaxies and the reionization of the Universe
Star forming galaxies represent a valuable tracer of cosmic history. Recent
observational progress with Hubble Space Telescope has led to the discovery and
study of the earliest-known galaxies corresponding to a period when the
Universe was only ~800 million years old. Intense ultraviolet radiation from
these early galaxies probably induced a major event in cosmic history: the
reionization of intergalactic hydrogen. New techniques are being developed to
understand the properties of these most distant galaxies and determine their
influence on the evolution of the universe.Comment: Review article appearing in Nature. This posting reflects a submitted
version of the review formatted by the authors, in accordance with Nature
publication policies. For the official, published version of the review,
please see http://www.nature.com/nature/archive/index.htm
Anti-diabetic effects of emodin involved in the activation of PPAR gamma on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice
Rheum palmatum unit has been widely applied in the clinical treatment of diabetes mellitus It has been found that emodin as the major bioactive component of R palmatum L exhibits the competency to activate peroxisomal proliferator-activated receptor-gamma (PPAR gamma) in vitro So the aim of this study was to evaluate the anti-diabetic effects of emodin through the activation of PPAR gamma on high-fat diet-fed and low dose of streptozotocin (STZ)-induced diabetic mice The diabetic mice were intraperitoneally injected with emodin for three weeks No changes of food consumption and the body weight in emodin-treated mice were monitored daily during the entire experiment At the end of experiment. the levels of blood glucose, triglyceride and total cholesterol in serum were significantly decreased after emodin treatment. However, serum high-density lipoprotein cholesterol (HDLc) concentration was significantly elevated The glucose tolerance and insulin sensitivity in emodin-treated group were significantly improved Furthermore, the results of quantitative RT-PCR analysis showed that emodin significantly elevated the mRNA expression level of PPAR gamma and regulated the mRNA expressions of LPL. FAT/CD36, resistin and FABPs (ap2) in liver and adipocyte tissues. No effects on the mRNA expressions of PPAR alpha and PPAR alpha-target genes were observed Taken together, the results suggested that the activation of PPAR gamma and the modulation of metabolism-related genes were likely involved in the anti-diabetic effects of emodin (C) 2009 Elsevier B V All rights reserve
A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR
Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-C-13(2)-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature (similar to 120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40A degrees, it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed
A bi-directional relationship between obesity and health-related quality of life : evidence from the longitudinal AusDiab study
Objective: To assess the prospective relationship between obesity and health-related quality of life, including a novel assessment of the impact of health-related quality of life on weight gain.Design and setting: Longitudinal, national, population-based Australian Diabetes, Obesity and Lifestyle (AusDiab) study, with surveys conducted in 1999/2000 and 2004/2005.Participants: A total of 5985 men and women aged 25 years at study entry.Main outcome measure(s): At both time points, height, weight and waist circumference were measured and self-report data on health-related quality of life from the SF-36 questionnaire were obtained. Cross-sectional and bi-directional, prospective associations between obesity categories and health-related quality of life were assessed.Results: Higher body mass index (BMI) at baseline was associated with deterioration in health-related quality of life over 5 years for seven of the eight health-related quality of life domains in women (all P0.01, with the exception of mental health, P>0.05), and six out of eight in men (all P<0.05, with the exception of role-emotional, P=0.055, and mental health, P>0.05). Each of the quality-of-life domains related to mental health as well as the mental component summary were inversely associated with BMI change (all P<0.0001 for women and P0.01 for men), with the exception of vitality, which was significant in women only (P=0.008). For the physical domains, change in BMI was inversely associated with baseline general health in women only (P=0.023).Conclusions: Obesity was associated with a deterioration in health-related quality of life (including both physical and mental health domains) in this cohort of Australian adults followed over 5 years. Health-related quality of life was also a predictor of weight gain over 5 years, indicating a bi-directional association between obesity and health-related quality of life. The identification of those with poor health-related quality of life may be important in assessing the risk of future weight gain, and a focus on health-related quality of life may be beneficial in weight management strategies.<br /
- …
