283 research outputs found
Investigation of phase separation within the generalized Lin-Taylor model for a binary liquid mixture of large hexagonal and small triangular particles
The generalized Lin-Taylor model defined on the hexagonal lattice is used to
investigate the phase separation in an asymmetric binary liquid mixture
consisting of large A (hexagons) and small B (triangles) particles. By
considering interaction energies between A-A and A-B pairs of particles that
occupy nearest-neighbour cells of the hexagonal lattice, we have derived an
exact solution for the considered model system having established a mapping
correspondence with the two-dimensional Ising model on its dual triangular
lattice. Altogether, six different types of coexistence curves including those
with reentrant miscibility regions (i.e. closed-loop coexistence curves) were
found in dependence on the relative strength between both coupling constants.Comment: 8 pages, 4 figures, presented at 7th Liblice conference on the
Statistical Mechanics of Liquids to be held in Lednice on June 11-16, 200
Why it takes an 'ontological shock' to prompt increases in small firm resilience : sensemaking, emotions and flood risk
This article uses a sensemaking approach to understand small firms’ responses to the threat of external shocks. By analysing semi-structured interviews with owners of flooded small firms, we investigate how owners process flood experiences and explore why such experiences do not consistently lead to the resilient adaptation of premises. We, conclude that some of the explanation for low levels of adaptation relates to a desire to defend existing sensemaking structures and associated identities. Sensemaking structures are only revised if these structures are not critical to business identity, or if a flood constitutes an ‘ontological shock’ and renders untenable existing assumptions regarding long-term business continuity. This article has implications for adaptation to the growing risk of flooding, climate change and external shocks. Future research analysing external shocks would benefit from using a sensemaking approach and survey studies should include measurements of ‘ontological’ impact as well as material and financial damage. In addition, those designing information campaigns should take account of small firms’ resistance to information that threatens their existing sensemaking structures and social identities
Enriched Environment Experience Overcomes Learning Deficits and Depressive-Like Behavior Induced by Juvenile Stress
Mood disorders affect the lives and functioning of millions each year. Epidemiological studies indicate that childhood trauma is predominantly associated with higher rates of both mood and anxiety disorders. Exposure of rats to stress during juvenility (JS) (27–29 days of age) has comparable effects and was suggested as a model of induced predisposition for these disorders. The importance of the environment in the regulation of brain, behavior and physiology has long been recognized in biological, social and medical sciences. Here, we studied the effects of JS on emotional and cognitive aspects of depressive-like behavior in adulthood, on Hypothalamic-Pituitary-Adrenal (HPA) axis reactivity and on the expression of cell adhesion molecule L1 (L1-CAM). Furthermore, we combined it with the examination of potential reversibility by enriched environment (EE) of JS – induced disturbances of emotional and cognitive aspects of behavior in adulthood. Three groups were tested: Juvenile Stress –subjected to Juvenile stress; Enriched Environment – subjected to Juvenile stress and then, from day 30 on to EE; and Naïves. In adulthood, coping and stress responses were examined using the elevated plus-maze, open field, novel setting exploration and two way shuttle avoidance learning. We found that, JS rats showed anxiety- and depressive-like behaviors in adulthood, altered HPA axis activity and altered L1-CAM expression. Increased expression of L1-CAM was evident among JS rats in the basolateral amygdala (BLA) and Thalamus (TL). Furthermore, we found that EE could reverse most of the effects of Juvenile stress, both at the behavioral, endocrine and at the biochemical levels. The interaction between JS and EE resulted in an increased expression of L1-CAM in dorsal cornu ammonis (CA) area 1 (dCA1)
Kinetochore fiber formation in animal somatic cells : dueling mechanisms come to a draw
Author Posting. © The Author, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Chromosoma 114 (2005): 310-318, doi:10.1007/s00412-005-0028-2.The attachment to and movement of a chromosome on the mitotic spindle is
mediated by the formation of a bundle of microtubules (MTs) that tethers the
kinetochore on the chromosome to a spindle pole. The origin of these “kinetochore
fibers” (K-fibers) has been investigated for over 125 years. As noted in 1944 by
Schrader, there are only three possible ways to form a K-fiber: either it a) grows from
the pole until it contacts the kinetochore; b) grows directly from the kinetochore; or c)
it forms as a result of an interaction between the pole and the chromosome. Since
Schrader’s time it has been firmly established that K-fibers in centrosome-containing
animal somatic cells form as kinetochores capture MTs growing from the spindle pole
(route a). It is now similarly clear that in cells lacking centrosomes, including plants
and many animal oocytes, K-fibers “self-assemble” from MTs generated by the
chromosomes (route b). Can animal somatic cells form K-fibers in the absence of
centrosomes by the “self-assembly” pathway? In 2000 the answer to this question
was shown to be a resounding “yes”. With this result, the next question became
whether the presence of a centrosome normally suppresses K-fiber self-assembly, or
if this route works concurrently with centrosome-mediated K-fiber formation. This
question, too, has recently been answered: observations on untreated live animal cells
expressing GFP-tagged tubulin clearly show that kinetochores can nucleate the
formation of their associated MTs in the presence of functional centrosomes. The
concurrent operation of these two “dueling” routes for forming K-fibers in animals
helps explain why the attachment of kinetochores and the maturation of K-fibers
occur as quickly as it does on all chromosomes within a cell.The work is sponsored by
NIH grant GMS 40198
Structural Relationships between Highly Conserved Elements and Genes in Vertebrate Genomes
Large numbers of sequence elements have been identified to be highly conserved among vertebrate genomes. These highly conserved elements (HCEs) are often located in or around genes that are involved in transcription regulation and early development. They have been shown to be involved in cis-regulatory activities through both in vivo and additional computational studies. We have investigated the structural relationships between such elements and genes in six vertebrate genomes human, mouse, rat, chicken, zebrafish and tetraodon and detected several thousand cases of conserved HCE-gene associations, and also cases of HCEs with no common target genes. A few examples underscore the potential significance of our findings about several individual genes. We found that the conserved association between HCE/HCEs and gene/genes are not restricted to elements by their absolute distance on the genome. Notably, long-range associations were identified and the molecular functions of the associated genes do not show any particular overrepresentation of the functional categories previously reported. HCEs in close proximity are found to be linked with different set of gene/genes. The results reflect the highly complex correlation between HCEs and their putative target genes
Self-perceived quality of life predicts mortality risk better than a multi-biomarker panel, but the combination of both does best
<p>Abstract</p> <p>Background</p> <p>Associations between measures of subjective health and mortality risk have previously been shown. We assessed the impact and comparative predictive performance of a multi-biomarker panel on this association.</p> <p>Methods</p> <p>Data from 4,261 individuals aged 20-79 years recruited for the population-based Study of Health in Pomerania was used. During an average 9.7 year follow-up, 456 deaths (10.7%) occurred. Subjective health was assessed by SF-12 derived physical (PCS-12) and mental component summaries (MCS-12), and a single-item self-rated health (SRH) question. We implemented Cox proportional-hazards regression models to investigate the association of subjective health with mortality and to assess the impact of a combination of 10 biomarkers on this association. Variable selection procedures were used to identify a parsimonious set of subjective health measures and biomarkers, whose predictive ability was compared using receiver operating characteristic (ROC) curves, C-statistics, and reclassification methods.</p> <p>Results</p> <p>In age- and gender-adjusted Cox models, poor SRH (hazard ratio (HR), 2.07; 95% CI, 1.34-3.20) and low PCS-12 scores (lowest vs. highest quartile: HR, 1.75; 95% CI, 1.31-2.33) were significantly associated with increased risk of all-cause mortality; an association independent of various covariates and biomarkers. Furthermore, selected subjective health measures yielded a significantly higher C-statistic (0.883) compared to the selected biomarker panel (0.872), whereas a combined assessment showed the highest C-statistic (0.887) with a highly significant integrated discrimination improvement of 1.5% (p < 0.01).</p> <p>Conclusion</p> <p>Adding biomarker information did not affect the association of subjective health measures with mortality, but significantly improved risk stratification. Thus, a combined assessment of self-reported subjective health and measured biomarkers may be useful to identify high-risk individuals for intensified monitoring.</p
Dissecting the Transcriptional Regulatory Properties of Human Chromosome 16 Highly Conserved Non-Coding Regions
Non-coding DNA conservation across species has been often used as a predictor for transcriptional enhancer activity. However, only a few systematic analyses of the function of these highly conserved non-coding regions (HCNRs) have been performed. Here we use zebrafish transgenic assays to perform a systematic study of 113 HCNRs from human chromosome 16. By comparing transient and stable transgenesis, we show that the first method is highly inefficient, leading to 40% of false positives and 20% of false negatives. When analyzed in stable transgenic lines, a great majority of HCNRs were active in the central nervous system, although some of them drove expression in other organs such as the eye and the excretory system. Finally, by testing a fraction of the HCNRs lacking enhancer activity for in vivo insulator activity, we find that 20% of them may contain enhancer-blocking function. Altogether our data indicate that HCNRs may contain different types of cis-regulatory activity, including enhancer, insulators as well as other not yet discovered functions
Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences
Pax6 is a developmental control gene essential for eye development throughout the animal kingdom. In addition, Pax6 plays key roles in other parts of the CNS, olfactory system, and pancreas. In mammals a single Pax6 gene encoding multiple isoforms delivers these pleiotropic functions. Here we provide evidence that the genomes of many other vertebrate species contain multiple Pax6 loci. We sequenced Pax6-containing BACs from the cartilaginous elephant shark (Callorhinchus milii) and found two distinct Pax6 loci. Pax6.1 is highly similar to mammalian Pax6, while Pax6.2 encodes a paired-less Pax6. Using synteny relationships, we identify homologs of this novel paired-less Pax6.2 gene in lizard and in frog, as well as in zebrafish and in other teleosts. In zebrafish two full-length Pax6 duplicates were known previously, originating from the fish-specific genome duplication (FSGD) and expressed in divergent patterns due to paralog-specific loss of cis-elements. We show that teleosts other than zebrafish also maintain duplicate full-length Pax6 loci, but differences in gene and regulatory domain structure suggest that these Pax6 paralogs originate from a more ancient duplication event and are hence renamed as Pax6.3. Sequence comparisons between mammalian and elephant shark Pax6.1 loci highlight the presence of short- and long-range conserved noncoding elements (CNEs). Functional analysis demonstrates the ancient role of long-range enhancers for Pax6 transcription. We show that the paired-less Pax6.2 ortholog in zebrafish is expressed specifically in the developing retina. Transgenic analysis of elephant shark and zebrafish Pax6.2 CNEs with homology to the mouse NRE/Pα internal promoter revealed highly specific retinal expression. Finally, morpholino depletion of zebrafish Pax6.2 resulted in a "small eye" phenotype, supporting a role in retinal development. In summary, our study reveals that the pleiotropic functions of Pax6 in vertebrates are served by a divergent family of Pax6 genes, forged by ancient duplication events and by independent, lineage-specific gene losses
Moderate exercise and chronic stress produce counteractive effects on different areas of the brain by acting through various neurotransmitter receptor subtypes: A hypothesis
BACKGROUND: Regular, "moderate", physical exercise is an established non-pharmacological form of treatment for depressive disorders. Brain lateralization has a significant role in the progress of depression. External stimuli such as various stressors or exercise influence the higher functions of the brain (cognition and affect). These effects often do not follow a linear course. Therefore, nonlinear dynamics seem best suited for modeling many of the phenomena, and putative global pathways in the brain, attributable to such external influences. HYPOTHESIS: The general hypothesis presented here considers only the nonlinear aspects of the effects produced by "moderate" exercise and "chronic" stressors, but does not preclude the possibility of linear responses. In reality, both linear and nonlinear mechanisms may be involved in the final outcomes. The well-known neurotransmitters serotonin (5-HT), dopamine (D) and norepinephrine (NE) all have various receptor subtypes. The article hypothesizes that 'Stress' increases the activity/concentration of some particular subtypes of receptors (designated nt(s)) for each of the known (and unknown) neurotransmitters in the right anterior (RA) and left posterior (LP) regions (cortical and subcortical) of the brain, and has the converse effects on a different set of receptor subtypes (designated nt(h)). In contrast, 'Exercise' increases nt(h )activity/concentration and/or reduces nt(s )activity/concentration in the LA and RP areas of the brain. These effects may be initiated by the activation of Brain Derived Neurotrophic Factor (BDNF) (among others) in exercise and its suppression in stress. CONCLUSION: On the basis of this hypothesis, a better understanding of brain neurodynamics might be achieved by considering the oscillations caused by single neurotransmitters acting on their different receptor subtypes, and the temporal pattern of recruitment of these subtypes. Further, appropriately designed and planned experiments will not only corroborate such theoretical models, but also shed more light on the underlying brain dynamics
- …