61 research outputs found

    The developmental effects of media-ideal internalization and self-objectification processes on adolescents’ negative body-feelings, dietary restraint, and binge eating

    Get PDF
    Despite accumulated experimental evidence of the negative effects of exposure to media-idealized images, the degree to which body image, and eating related disturbances are caused by media portrayals of gendered beauty ideals remains controversial. On the basis of the most up-to-date meta-analysis of experimental studies indicating that media-idealized images have the most harmful and substantial impact on vulnerable individuals regardless of gender (i.e., “internalizers” and “self-objectifiers”), the current longitudinal study examined the direct and mediated links posited in objectification theory among media-ideal internalization, self-objectification, shame and anxiety surrounding the body and appearance, dietary restraint, and binge eating. Data collected from 685 adolescents aged between 14 and 15 at baseline (47 % males), who were interviewed and completed standardized measures annually over a 3-year period, were analyzed using a structural equation modeling approach. Results indicated that media-ideal internalization predicted later thinking and scrutinizing of one’s body from an external observer’s standpoint (or self-objectification), which then predicted later negative emotional experiences related to one’s body and appearance. In turn, these negative emotional experiences predicted subsequent dietary restraint and binge eating, and each of these core features of eating disorders influenced each other. Differences in the strength of these associations across gender were not observed, and all indirect effects were significant. The study provides valuable information about how the cultural values embodied by gendered beauty ideals negatively influence adolescents’ feelings, thoughts and behaviors regarding their own body, and on the complex processes involved in disordered eating. Practical implications are discussed

    Transformation induced by Ewing's sarcoma associated EWS/FLI-1 is suppressed by KRAB/FLI-1

    Get PDF
    Ewing's sarcoma is a childhood bone tumour with poor prognosis, most commonly associated with a t(11;22)(q24;q12) reciprocal translocation that fuses the EWS and FLI-1 genes, resulting in the production of an aberrant chimeric transcription factor EWS/FLI-1. To erucidate the mechanisms by which EWS/FLI-1 mediates transformation in mouse models, we have generated a murine Ews/Fli-1 fusion protein. We demonstrate that this protein transforms fibroblast celrs in vitro similar to human EWS/FLI-1 as demonstrated by serum and anchorage-independent growth, the formation of tumours in nude mice and elevation of the oncogenic marker c-myc. Furthermore, transformation of these cells was inhibited by a specific represser, KRAB/FLI-1. The KRAB/FLI-1 repressor also suppressed the tumorigenic phenotype of a human Ewing's sarcoma cell line. These findings suggest that the transformed phenotype of Ewing's sarcoma cells can be reversed by using the sequence-specific FLI-1-DNA-binding domain to target a gone repressor domain. The inhibition of EWS/FLI-1 is the first demonstration of the KRAB domain suppressing the action of an ETS factor. This approach provides potential avenues for the elucidation of the biological mechanisms of EWS/FLI-1 oncogenesis and the development of novel therapeutic strategies. © 2003 Cancer Research UK.link_to_subscribed_fulltex

    Tannerella forsythia, a periodontal pathogen entering the genomic era

    Get PDF
    Several questions need to be addressed to evaluate whether Tannerella forsythia is to be considered a periodontal pathogen. T. forsythia has been detected in periodontal health and disease, so could it be a pathogen? The species was not detected in many studies despite finding other putative pathogens, so could it be important in pathogenicity? The challenges of working with T. forsythia include its fastidious and anaerobic growth requirements for cultural detection. Thus, studies associating T. forsythia with periodontal and other oral infections have used noncultural approaches (immunoassays and DNA-based assays) in addition to cultural approaches. We feel the timing of this review represents an interesting transition period in our understanding of the relationships of species with infection. Information from the recently released full genome sequence data of T. forsythia will provide new approaches and tools that can be directed to assess pathogenicity. Furthermore, molecular assessment of gene expression will provide a new understanding of the pathogenical potential of the species, and its effect on the host. T. forsythia, was described in reviews focusing on periodontal pathogens associated with herpesvirus detection (200), species for which genome projects were underway (41), members of polybacterial periodontal pathogenic consortium (91), and participants in periodontal microbial ecology (202). We will describe the history, taxonomy, and characteristics of T. forsythia, and related species or phylotypes in the genus Tannerella. To assess the pathogenic potential of T. forsythia, we first describe species associations with periodontal and other infections, including animal models, as has been the traditional approach arising from Koch’s postulates (203). Criteria for pathogenicity were expanded to incorporate sequence- derived information (58), and again more recently to include molecular signatures of pathogens and disease (170). We used sequence and genome-derived information, in addition to biofilm, pathogenic mediators, and host responses, to further explore the pathogenic potential of T. forsythia

    JARID2 is a direct target of the PAX3-FOXO1 fusion protein and inhibits myogenic differentiation of rhabdomyosarcoma cells

    Get PDF
    Rhabdomyosarcomas (RMS) are the most frequent soft-tissue sarcoma in children and characteristically show features of developing skeletal muscle. The alveolar subtype is frequently associated with a PAX3-FOXO1 fusion protein that is known to contribute to the undifferentiated myogenic phenotype of RMS cells. Histone methylation of lysine residues controls developmental processes in both normal and malignant cell contexts. Here we show that JARID2, that encodes a protein known to recruit various complexes with histone methylating activity to their target genes, is significantly overexpressed in RMS with PAX3-FOXO1 compared to fusion gene negative RMS (t test p<0.0001). Multivariate analyses showed higher JARID2 levels are also associated with metastases at diagnosis, independent of fusion gene status and RMS subtype (n= 120; p=0.039). JARID2 levels were altered by silencing or over-expressing PAX3-FOXO1 in RMS cell lines with and without the fusion gene, respectively. Consistent with this, we demonstrated that JARID2 is a direct transcriptional target of the PAX3-FOXO1 fusion protein. Silencing JARID2 resulted in reduced cell proliferation coupled with myogenic differentiation including increased expression of MYOGENIN (MYOG) and MYOSIN LIGHT CHAIN (MYL1) in RMS cell lines representative of both the alveolar and embryonal subtypes. Induced myogenic differentiation was associated with a decrease in JARID2 levels and this phenotype could be rescued by overexpressing JARID2. Furthermore, we that showed JARID2 binds to and alters the methylation status of histone H3 lysine 27 in the promoter regions of MYOG and MYL1 and that the interaction of JARID2 at these promoters is dependent upon EED, a core component of the Polycomb Repressive Complex 2 (PRC2). Therefore JARID2 is a downstream effector of PAX3-FOXO1 that maintains an undifferentiated myogenic phenotype that is characteristic of RMS. JARID2 and other components of PRC2 may represent novel therapeutic targets for treating RMS patients

    Ovine Hemisection Model of Spinal Cord Injury

    No full text
    corecore