629 research outputs found

    Analysis of simple 2-D and 3-D metal structures subjected to fragment impact

    Get PDF
    Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated

    Two-dimensional finite-element analyses of simulated rotor-fragment impacts against rings and beams compared with experiments

    Get PDF
    Finite element modeling alternatives as well as the utility and limitations of the two dimensional structural response computer code CIVM-JET 4B for predicting the transient, large deflection, elastic plastic, structural responses of two dimensional beam and/or ring structures which are subjected to rigid fragment impact were investigated. The applicability of the CIVM-JET 4B analysis and code for the prediction of steel containment ring response to impact by complex deformable fragments from a trihub burst of a T58 turbine rotor was studied. Dimensional analysis considerations were used in a parametric examination of data from engine rotor burst containment experiments and data from sphere beam impact experiments. The use of the CIVM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions

    User's guide to computer programs JET 5A and CIVM-JET 5B to calculate the large elastic-plastic dynamically-induced deformations of multilayer partial and/or complete structural rings

    Get PDF
    These structural ring deflections lie essentially in one plane and, hence, are called two-dimensional (2-d). The structural rings may be complete or partial; the former may be regarded as representing a fragment containment ring while the latter may be viewed as a 2-d fragment-deflector structure. These two types of rings may be either free or supported in various ways (pinned-fixed, locally clamped, elastic-foundation supported, mounting-bracket supported, etc.). The initial geometry of each ring may be circular or arbitrarily curved; uniform-thickness or variable-thickness rings may be analyzed. Strain-hardening and strain-rate effects of initially-isotropic material are taken into account. An approximate analysis utilizing kinetic energy and momentum conservation relations is used to predict the after-impact velocities of each fragment and of the impact-affected region of the ring; this procedure is termed the collision-imparted velocity method (CIVM) and is used in the CIVM-JET 5 B program. This imparted-velocity information is used in conjunction with a finite-element structural response computation code to predict the transient, large-deflection, elastic-plastic responses of the ring. Similarly, the equations of motion of each fragment are solved in small steps in time. Provisions are made in the CIVM-JET 5B code to analyze structural ring response to impact attack by from 1 to 3 fragments, each with its own size, mass, translational velocity components, and rotational velocity. The effects of friction between each fragment and the impacted ring are included

    Experimental transient and permanent deformation studies of steel-sphere-impacted or explosively-impulsed aluminum panels

    Get PDF
    The sheet explosive loading technique (SELT) was employed to obtain elastic-plastic, large deflection 3-d transient and/or permanent strain data on simple well defined structural specimens and materials: initially-flat 6061-T651 aluminum panels with all four sides ideally clamped via integral construction. The SELT loading technique was chosen since it is both convenient and provides "forcing function information" of small uncertainty. These data will be useful for evaluating pertinent 3-d structural response prediction methods

    Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing

    Get PDF
    Diamond's nitrogen vacancy (NV) center is an optically active defect with long spin coherence times, showing great potential for both efficient nanoscale magnetometry and quantum information processing schemes. Recently, both the formation of buried 3D optical waveguides and high quality single NVs in diamond were demonstrated using the versatile femtosecond laser-writing technique. However, until now, combining these technologies has been an outstanding challenge. In this work, we fabricate laser written photonic waveguides in quantum grade diamond which are aligned to within micron resolution to single laser-written NVs, enabling an integrated platform providing deterministically positioned waveguide-coupled NVs. This fabrication technology opens the way towards on-chip optical routing of single photons between NVs and optically integrated spin-based sensing

    Instructions for the use of the CIVM-Jet 4C finite-strain computer code to calculate the transient structural responses of partial and/or complete arbitrarily-curved rings subjected to fragment impact

    Get PDF
    The CIVM-JET 4C computer program for the 'finite strain' analysis of 2 d transient structural responses of complete or partial rings and beams subjected to fragment impact stored on tape as a series of individual files. Which subroutines are found in these files are described in detail. All references to the CIVM-JET 4C program are made assuming that the user has a copy of NASA CR-134907 (ASRL TR 154-9) which serves as a user's guide to (1) the CIVM-JET 4B computer code and (2) the CIVM-JET 4C computer code 'with the use of the modified input instructions' attached hereto

    Mitigation Translocation of Red-Tailed Hawks to Reduce Raptor–Aircraft Collisions

    Get PDF
    Translocation of problematic individual animals is commonly used to reduce human–wildlife conflicts, especially to reduce the presence or abundance of raptors within airport environments, where they pose a risk to safe aircraft operations. Although this method has strong public support, there have been no scientific evaluations of its efficacy or to determine which factors might influence the return of translocated birds to the airport. We conducted a study to determine which biological and logistical factors might influence the return of red-tailed hawks (Buteo jamaicensis) translocated from Chicago’s O’Hare International Airport (ORD) during 2010–2013. We live-captured and translocated red-tailed hawks various distances from the ORD airfield and monitored for returning birds. We found the odds of hawk return increased by 2.36 (95% CI=0.99–5.70) times for older birds (\u3e1 yr of age) relative to younger birds (≤1yr of age). Odds of hawk return went up 4.10 (95% CI=0.75–22.2) times when translocations were conducted during the breeding season relative to the non-breeding season. The odds of hawk return increased 11.94 (95% CI=3.29–43.38) times for each subsequent translocation event involving the same hawk. The cost of 1 translocation event to the release sites that were 81, 121, 181, and 204 km from ORD was 213,213, 284, 362,and362, and 426, respectively. Management programs that use release sites 80 km from the airport minimize translocation events to include only younger birds during the non-breeding season, and undertake only 1 translocation event for an individual hawk would increase program efficacy and greatly reduce program implementation costs. The decision matrix regarding the use of a raptor trapping and translocation program involves a variety of biological, logistical, economic, and sociopolitical variables. This study represents an important first step in providing a scientific foundation for informing such management decisions

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    • …
    corecore