209 research outputs found

    QCD Corrections and the Endpoint of the Lepton Spectrum in Semileptonic B Decays

    Full text link
    Recently, Neubert has suggested that a certain class of nonperturbative corrections dominates the shape of the electron spectrum in the endpoint region of semileptonic BB decay. Perturbative QCD corrections are important in the endpoint region. We study the effects of these corrections on Neubert's proposal. The connection between the endpoint of the electron spectrum in semileptonic BB decay and the photon spectrum in bsγb\rightarrow s\gamma is outlined.Comment: 18 pages, uses REVTeX, UCSD/PTH 93-38, CALT-68-1910, JHU-TIPAC-930029 (some changes to the discussion of subleading radiative corrections, and minor typos fixed

    BsBKB_s^* B K vertex from QCD sum rules

    Full text link
    The form factors and the coupling constant of the BsBKB_s^* B K vertex are calculated using the QCD sum rules method. Three point correlation functions are computed considering both KK and BB mesons off-shell and, after an extrapolation of the QCDSR results, we obtain the coupling constant of the vertex. We study the uncertainties in our result by calculating a third form factor obtained when the BsB^*_s is the off-shell meson, considering other acceptable structures and computing the variations of the sum rules' parameters. The form factors obtained have different behaviors but their simultaneous extrapolations reach to the same value of the coupling constant gBsBK=10.6±1.7g_{B_s^* B K}=10.6 \pm 1.7. We compare our result with other theoretical estimates.Comment: 11 pages, 11 figure

    An automated archival VLA transients survey

    Get PDF
    In this paper we present the results of a survey for radio transients using data obtained from the Very Large Array archive. We have reduced, using a pipeline procedure, 5037 observations of the most common pointings - i.e. the calibrator fields. These fields typically contain a relatively bright point source and are used to calibrate 'target' observations: they are therefore rarely imaged themselves. The observations used span a time range ˜1984-2008 and consist of eight different pointings, three different frequencies (8.4, 4.8 and 1.4 GHz) and have a total observing time of 435 h. We have searched for transient and variable radio sources within these observations using components from the prototype LOFAR transient detection system. In this paper we present the methodology for reducing large volumes of Very Large Array data; and we also present a brief overview of the prototype LOFAR transient detection algorithms. No radio transients were detected in this survey, therefore we place an upper limit on the snapshot rate of GHz frequency transients >8.0 mJy to ρ≤ 0.032 deg-2 that have typical time-scales 4.3 to 45.3 d. We compare and contrast our upper limit with the snapshot rates - derived from either detections or non-detections of transient and variable radio sources - reported in the literature. When compared with the current Log N-Log S distribution formed from previous surveys, we show that our upper limit is consistent with the observed population. Current and future radio transient surveys will hopefully further constrain these statistics, and potentially discover dominant transient source populations. In this paper we also briefly explore the current transient commissioning observations with LOFAR, and the impact they will make on the field

    A very brief description of LOFAR - the Low Frequency Array

    Get PDF
    LOFAR (Low Frequency Array) is an innovative radio telescope optimized for the frequency range 30-240 MHz. The telescope is realized as a phased aperture array without any moving parts. Digital beam forming allows the telescope to point to any part of the sky within a second. Transient buffering makes retrospective imaging of explosive short-term events possible. The scientific focus of LOFAR will initially be on four key science projects (KSPs): 1) detection of the formation of the very first stars and galaxies in the universe during the so-called epoch of reionization by measuring the power spectrum of the neutral hydrogen 21-cm line (Shaver et al. 1999) on the ~5' scale; 2) low-frequency surveys of the sky with of order 10810^8 expected new sources; 3) all-sky monitoring and detection of transient radio sources such as gamma-ray bursts, x-ray binaries, and exo-planets (Farrell et al. 2004); and 4) radio detection of ultra-high energy cosmic rays and neutrinos (Falcke & Gorham 2003) allowing for the first time access to particles beyond 10^21 eV (Scholten et al. 2006). Apart from the KSPs open access for smaller projects is also planned. Here we give a brief description of the telescope.Comment: 2 pages, IAU GA 2006, Highlights of Astronomy, Volume 14, K.A. van der Hucht, e

    CKM Favored Semileptonic Decays of Heavy Hadrons at Zero Recoil

    Full text link
    We study the properties of Cabibbo-Kobayashi-Maskawa (CKM) favored semileptonic decays of mesons and baryons containing a heavy quark at the point of no recoil. We first use a diagrammatic analysis to rederive the result observed by earlier authors that at this kinematic point the BB meson decays via bcb\to c transitions can only produce a DD or DD^* meson. The result is generalized to include photon emissions which violate heavy quark flavor symmetry. We show that photons emitted by the heavy quarks and the charged lepton are the only light particles that can decorate the decays BˉD(D)+ν\bar{B}\to D(D^*) + \ell\nu at zero recoil, and the similar processes of heavy baryons. Implications for the determinations of the CKM parameter VcbV_{cb} are discussed. Also studied in this paper is the connection between our diagrammatic analysis of suppression of particle emission and the formal observation based on weak currents at zero recoil being generators of heavy quark symmetry. We show that the two approaches can be unified by considering the Isgur-Wise function in the presence of an external source.Comment: 27 pages, including 11 figures using macros FEYNMAN.te

    Nonresonant Semileptonic Heavy Quark Decay

    Get PDF
    In both the large N_c limit and the valence quark model, semileptonic decays are dominated by resonant final states. Using Bjorken's sum rule in an "unquenched" version of the quark model, I demonstrate that in the heavy quark limit nonresonant final states should also be produced at a significant rate. By calculating the individual strengths of a large number of exclusive two-body nonresonant channels, I show that the total rate for such processes is highly fragmented. I also describe some very substantial duality-violating suppression factors which reduce the inclusive nonresonant rate to a few percent of the total semileptonic rate for the finite quark masses of B decay, and comment on the importance of nonresonant decays as testing grounds for very basic ideas on the structure, strength, and significance of the quark-antiquark sea and on quark-hadron duality in QCD.Comment: 51 pages, 2 Postscript figure

    Observing the First Stars and Black Holes

    Full text link
    The high sensitivity of JWST will open a new window on the end of the cosmological dark ages. Small stellar clusters, with a stellar mass of several 10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun should be directly detectable out to redshift z=10, and individual supernovae (SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible beyond this redshift. Dense primordial gas, in the process of collapsing from large scales to form protogalaxies, may also be possible to image through diffuse recombination line emission, possibly even before stars or BHs are formed. In this article, I discuss the key physical processes that are expected to have determined the sizes of the first star-clusters and black holes, and the prospect of studying these objects by direct detections with JWST and with other instruments. The direct light emitted by the very first stellar clusters and intermediate-mass black holes at z>10 will likely fall below JWST's detection threshold. However, JWST could reveal a decline at the faint-end of the high-redshift luminosity function, and thereby shed light on radiative and other feedback effects that operate at these early epochs. JWST will also have the sensitivity to detect individual SNe from beyond z=10. In a dedicated survey lasting for several weeks, thousands of SNe could be detected at z>6, with a redshift distribution extending to the formation of the very first stars at z>15. Using these SNe as tracers may be the only method to map out the earliest stages of the cosmic star-formation history. Finally, we point out that studying the earliest objects at high redshift will also offer a new window on the primordial power spectrum, on 100 times smaller scales than probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and Concurrent Facilities", Astrophysics & Space Science Library, Eds. H. Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008

    New methods to constrain the radio transient rate: results from a survey of four fields with LOFAR

    Get PDF
    We report on the results of a search for radio transients between 115 and 190 MHz with the LOw-Frequency ARray (LOFAR). Four fields have been monitored with cadences between 15 minutes and several months. A total of 151 images were obtained, giving a total survey area of 2275 deg2. We analysed our data using standard LOFAR tools and searched for radio transients using the LOFAR Transients Pipeline (TraP). No credible radio transient candidate has been detected; however, we are able to set upper limits on the surface density of radio transient sources at low radio frequencies. We also show that low-frequency radio surveys are more sensitive to steep-spectrum coherent transient sources than GHz radio surveys. We used two new statistical methods to determine the upper limits on the transient surface density. One is free of assumptions on the flux distribution of the sources, while the other assumes a power-law distribution in flux and sets more stringent constraints on the transient surface density. Both of these methods provide better constraints than the approach used in previous works. The best value for the upper limit we can set for the transient surface density, using the method assuming a power-law flux distribution, is 1.3 · 10-3 deg-2 for transients brighter than 0.3 Jy with a time-scale of 15 min, at a frequency of 150 MHz. We also calculated for the first time upper limits for the transient surface density for transients of different time-scales. We find that the results can differ by orders of magnitude from previously reported, simplified estimates
    corecore