269 research outputs found
Reconstruction of a long-term recovery process from pasture to forest
We used space-for-time substitution to obtain a directed successional sequence for subalpine meadow vegetation in the Swiss National Park. Since human impacts (e.g., domestic animal grazing) ceased in 1914, the successional processes documented are assumed to be autogenic in nature. The data consist of 59 permanent plots spanning almost 90 years, and include many spatial replications. An initial inspection of the individual time series revealed the existence of a variety of response patterns, which are described in the literature as representing different successional types. However, a closer inspection suggested that many of these series can be superimposed, as they are part of a much longer deterministic series. Linking the individual time series proved to be challenging. A heuristic approach produced results that differed depending on initial starting conditions. We therefore derived a deterministic algorithm to produce a unique solution. The resulting sequence largely confirmed the heuristic interpretation, suggesting a trend from early successional (post-grazing) grassland to pine invasion spanning about 400 years. This timespan is valid only for the climatic conditions near the treeline, and for plant species specific to the study site. Our results suggest that the various species temporal response models described in the literature may be artifactual, representing portions of underlying Gaussian responses. The data also indicate that species assemblages may persist for several decades with only minor fluctuations, only to change suddenly for no apparent reason
A cervical ligamentum flavum cyst in an 82-year-old woman presenting with spinal cord compression: a case report and review of the literature
<p>Abstract</p> <p>Introduction</p> <p>We report on a very rare case of a cervical ligamentum flavum cyst, which presented with progressive myelopathy and radiculopathy. The cyst was radically extirpated and our patient showed significant recovery. A review of the relevant literature yielded seven cases.</p> <p>Case presentation</p> <p>An 82-year-old Greek woman presented with progressive bilateral weakness of her upper extremities and causalgia, cervical pain, episodes of upper extremity numbness and significant walking difficulties. Her neurological examination showed diffusely decreased motor strength in both her upper and lower extremities. Magnetic resonance imaging of her cervical spine demonstrated a large, well-demarcated cystic lesion on the dorsal aspect of her spinal cord at the C3 to C4 level, significantly compressing the spinal cord at this level, in close proximity to the yellow ligament and the C3 left lamina. The largest diameter of this lesion was 1.4 cm, and there was no lesion enhancement after the intravenous administration of a paramagnetic contrast. The lesion was surgically removed after a bilateral C3 laminectomy. The thick cystic wall was yellow and fibro-elastic in consistency, while its content was gelatinous and yellow-brownish. A postoperative cervical-spine magnetic resonance image was obtained before her discharge, demonstrating decompression of her spinal cord and dural expansion. Her six-month follow-up evaluation revealed complete resolution of her walking difficulties, improvement in the muscle strength of her arms (4+/5 in all the affected muscle groups), no causalgia and a significant decrease in her preoperative upper extremity numbness.</p> <p>Conclusion</p> <p>Cervical ligamentum flavum cysts are rare benign lesions, which should be included in the list of differential diagnosis of spinal cystic lesions. They can be differentiated from other intracanalicular lesions by their hypointense appearance on T<sub>1</sub>-weighted and hyperintense appearance on T<sub>2</sub>-weighted magnetic resonance images, with contrast enhancement of the cystic wall. Surgical extirpation of the cyst is required for symptom alleviation and decompression of the spinal cord. The outcome of these cysts is excellent with no risk of recurrence.</p
Shadows and spirals in the protoplanetary disk HD 100453
Understanding the diversity of planets requires to study the morphology and
the physical conditions in the protoplanetary disks in which they form. We
observed and spatially resolved the disk around the ~10 Myr old protoplanetary
disk HD 100453 in polarized scattered light with SPHERE/VLT at optical and
near-infrared wavelengths, reaching an angular resolution of ~0.02", and an
inner working angle of ~0.09". We detect polarized scattered light up to ~0.42"
(~48 au) and detect a cavity, a rim with azimuthal brightness variations at an
inclination of 38 degrees, two shadows and two symmetric spiral arms. The
spiral arms originate near the location of the shadows, close to the semi major
axis. We detect a faint spiral-like feature in the SW that can be interpreted
as the scattering surface of the bottom side of the disk, if the disk is
tidally truncated by the M-dwarf companion currently seen at a projected
distance of ~119 au. We construct a radiative transfer model that accounts for
the main characteristics of the features with an inner and outer disk
misaligned by ~72 degrees. The azimuthal brightness variations along the rim
are well reproduced with the scattering phase function of the model. While
spirals can be triggered by the tidal interaction with the companion, the close
proximity of the spirals to the shadows suggests that the shadows could also
play a role. The change in stellar illumination along the rim, induces an
azimuthal variation of the scale height that can contribute to the brightness
variations. Dark regions in polarized images of transition disks are now
detected in a handful of disks and often interpreted as shadows due to a
misaligned inner disk. The origin of such a misalignment in HD 100453, and of
the spirals, is unclear, and might be due to a yet-undetected massive companion
inside the cavity, and on an inclined orbit.Comment: A&A, accepte
First light of the VLT planet finder SPHERE. II. The physical properties and the architecture of the young systems PZ Tel and HD 1160 revisited
[Abridged] Context. The young systems PZ Tel and HD 1160, hosting known
low-mass companions, were observed during the commissioning of the new planet
finder SPHERE with several imaging and spectroscopic modes. Aims. We aim to
refine the physical properties and architecture of both systems. Methods. We
use SPHERE commissioning data and REM observations, as well as literature and
unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2.
Results. We derive new photometry and confirm the nearly daily photometric
variability of PZ Tel A. Using literature data spanning 38 yr, we show that the
star also exhibits a long-term variability trend. The 0.63-3.8 mic SED of PZ
Tel B allows us to revise its properties: spectral type M7+/-1, Teff=2700+/-100
K, log(g)<4.5 dex, log(L/L_Sun)=-2.51+/-0.10 dex, and mass 38-72 MJ. The 1-3.8
mic SED of HD 1160 B suggests a massive brown dwarf or a low-mass star with
spectral type M5.5-7.0, Teff=3000+/-100 K, [M/H]=-0.5-0.0 dex,
log(L/L_Sun)=-2.81+/-0.10 dex, and mass 39-168 MJ. We confirm the deceleration
and high eccentricity (e>0.66) of PZ Tel B. For e<0.9, the inclination,
longitude of the ascending node, and time of periastron passage are well
constrained. The system is seen close to an edge-on geometry. We reject other
brown dwarf candidates outside 0.25" for both systems, and massive giant
planets (>4 MJ) outside 0.5" for the PZ Tel system. We also show that K1-K2
color can be used with YJH low-resolution spectra to identify young L-type
companions, provided high photometric accuracy (<0.05 mag) is achieved.
Conclusions. SPHERE opens new horizons in the study of young brown dwarfs and
giant exoplanets thanks to high-contrast imaging capabilities at optical and
near-infrared wavelengths, as well as high signal-to-noise spectroscopy in the
near-infrared from low (R~30-50) to medium resolutions (R~350).Comment: 25 pages, 23 figures, accepted for publication in A&A on Oct. 13th,
2015; version including language editing. Typo on co-author name on astroph
page corrected, manuscript unchange
SPHERE: the exoplanet imager for the Very Large Telescope
Observations of circumstellar environments to look for the direct signal of
exoplanets and the scattered light from disks has significant instrumental
implications. In the past 15 years, major developments in adaptive optics,
coronagraphy, optical manufacturing, wavefront sensing and data processing,
together with a consistent global system analysis have enabled a new generation
of high-contrast imagers and spectrographs on large ground-based telescopes
with much better performance. One of the most productive is the
Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE)
designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE
includes an extreme adaptive optics system, a highly stable common path
interface, several types of coronagraphs and three science instruments. Two of
them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager
and Spectrograph (IRDIS), are designed to efficiently cover the near-infrared
(NIR) range in a single observation for efficient young planet search. The
third one, ZIMPOL, is designed for visible (VIR) polarimetric observation to
look for the reflected light of exoplanets and the light scattered by debris
disks. This suite of three science instruments enables to study circumstellar
environments at unprecedented angular resolution both in the visible and the
near-infrared. In this work, we present the complete instrument and its on-sky
performance after 4 years of operations at the VLT.Comment: Final version accepted for publication in A&
Post conjunction detection of Pictoris b with VLT/SPHERE
With an orbital distance comparable to that of Saturn in the solar system,
\bpic b is the closest (semi-major axis \,9\,au) exoplanet that has
been imaged to orbit a star. Thus it offers unique opportunities for detailed
studies of its orbital, physical, and atmospheric properties, and of
disk-planet interactions. With the exception of the discovery observations in
2003 with NaCo at the Very Large Telescope (VLT), all following astrometric
measurements relative to \bpic have been obtained in the southwestern part of
the orbit, which severely limits the determination of the planet's orbital
parameters. We aimed at further constraining \bpic b orbital properties using
more data, and, in particular, data taken in the northeastern part of the
orbit.
We used SPHERE at the VLT to precisely monitor the orbital motion of beta
\bpic b since first light of the instrument in 2014. We were able to monitor
the planet until November 2016, when its angular separation became too small
(125 mas, i.e., 1.6\,au) and prevented further detection. We redetected \bpic b
on the northeast side of the disk at a separation of 139\,mas and a PA of
30 in September 2018. The planetary orbit is now well constrained.
With a semi-major axis (sma) of au (1 ), it
definitely excludes previously reported possible long orbital periods, and
excludes \bpic b as the origin of photometric variations that took place in
1981. We also refine the eccentricity and inclination of the planet. From an
instrumental point of view, these data demonstrate that it is possible to
detect, if they exist, young massive Jupiters that orbit at less than 2 au from
a star that is 20 pc away.Comment: accepted by A&
Višenukleonska emisija nakon pionske apsorpcije u N, Ar i Xe
Positive pion absorption was studied in an almost 4π geometry allowing simultaneous measurements of various charge and neutral multiplicities. Total absorption cross sections and its decomposition into the most important channels is determined. The results are presented for N, Ar and Xe nuclei at incident pion energies of 118,162 and 239 MeV. The role of multinucleon emission in the absorption process is emphasized.Proučava se pionska apsorpcija s blizu 4π detekcijom koja dozvoljava istovremeno mjerenje raznih nabojskih i neutralnih višestrukosti. Određuju se ukupni udarni presjeci i njihovo razlaganje u najvažnije kanale. Predstavljaju se rezultati za jezgre N, Ar i Xe na energijama 118,162 i 239 MeV. Ističe se uloga višenukleonske emisije u procesu apsorpcije
- …