8 research outputs found

    Effect of traditional plants in Sri Lanka on skin keratinocyte count

    No full text
    This article describes the effects of extracts of several plants collected in Sri Lanka on the number of human skin keratinocytes. This study especially focuses on the plants traditionally used in indigenous systems of medicine in Sri Lanka, such as Ayurveda, as described below (English name, “local name in Sri Lanka,” scientific name). Neem plant,”kohomba,” Azadirachta indica (Sujarwo et al., 2016; Nature’s Beauty Creations Ltd., 2014) [1,2], emblic myrobalan plant, “nelli,” Phyllanthus emblica (Singh et al., 2011; Nature’s Beauty Creations Ltd., 2014) [3,4], malabar nut plant, “adhatoda,” Justicia adhatoda (Claeson et al., 2000; Nature’s Beauty Creations Ltd., 2014) [5,6], holy basil plant, “maduruthala,” Ocimum tenuiflorum ( Cohen et al., 2014; Nature’s Beauty Creations Ltd., 2014) [7,8]. The expression profiles are provided as line graphs. Keywords: Cell number, Keratinocytes, Calcein assay, Traditional plant, Medical her

    Effect of traditional plants in Sri Lanka on skin fibroblast cell number

    No full text
    This article describes the effects of extracts of several plants collected in Sri Lanka on the cell number of human skin fibroblasts. This study especially focuses on the plants traditionally used in indigenous systems of medicine in Sri Lanka, such as Ayurveda, as described below (English name, “local name in Sri Lanka,” scientific name). Bougainvillea plant, “bouganvilla,” Bougainvillea grabla (Nature׳s Beauty Creations Ltd., 2014) [1], purple fruited pea eggplant,”welthibbatu,” Solanum trilobatum (Nature׳s Beauty Creations Ltd., 2014) [2], country borage plant, “kapparawalliya,” Plectranthus amboinicus (Nature׳s Beauty Creations Ltd., 2014) [3], malabar nut plant, “adhatoda,” Justicia adhatoda (Nature׳s Beauty Creations Ltd., 2014) [4], long pepper plant,”thippili,” Piper longum (Nature׳s Beauty Creations Ltd., 2014) [5], holy basil plant, “maduruthala,” Ocimum tenuiflorum (Nature׳s Beauty Creations Ltd., 2014) [6], air plant, “akkapana,” Kalanchoe pinnata (Nature׳s Beauty Creations Ltd., 2014) [7], plumed cockscomb plant, “kiri-henda,” Celosia argentea (Nature׳s Beauty Creations Ltd., 2014) [8], neem plant,”kohomba,” Azadirachta indica (Nature׳s Beauty Creations Ltd., 2014) [9], emblic myrobalan plant, “nelli,” Phyllanthus emblica (Nature׳s Beauty Creations Ltd., 2014) [10]. Human skin fibroblast cells were treated with various concentration of plant extracts (0–3.0%), and the cell viability of cells were detected using calcein assay. The cell viabillity profiles are provided as line graphs. Keywords: Cell number, Fibroblasts, Calcein assay, Traditional plant, Medical her

    Fibroblast and keratinocyte gene expression following exposure to extracts of neem plant (Azadirachta indica)

    No full text
    This data article provides gene expression profiles, determined by using real-time PCR, of fibroblasts and keratinocytes treated with 0.01% and 0.001% extracts of neem plant (Azadirachta indica), local name “Kohomba” in Sri Lanka, harvested in Sri Lanka. For fibroblasts, the dataset includes expression profiles for genes encoding hyaluronan synthase 1 (HAS1), hyaluronan synthase 2 (HAS2), hyaluronidase-1 (HYAL1), hyaluronidase-2 (HYAL2), versican, aggrecan, CD44, collagen, type I, alpha 1 (COL1A1), collagen, type III, alpha 1 (COL3A1), collagen, type VII, alpha 1 (COL7A1), matrix metalloproteinase 1 (MMP1), acid ceramidase, basic fibroblast growth factor (bFGF), fibroblast growth factor-7 (FGF7), vascular endothelial growth factor (VEGF), interleukin-1 alpha (IL-1α), cyclooxygenase-2 (cox2), transforming growth factor beta (TGF-β), and aquaporin 3 (AQP3). For keratinocytes, the expression profiles are for genes encoding HAS1, HAS2, HYAL1, HYAL2, versican, CD44, IL-1α, cox2, TGF-β, AQP3, Laminin5, collagen, type XVII, alpha 1 (COL17A1), integrin alpha-6 (ITGA6), ceramide synthase 3 (CERS3), elongation of very long chain fatty acids protein 1 (ELOVL1), elongation of very long chain fatty acids protein 4 (ELOVL4), filaggrin (FLG), transglutaminase 1 (TGM1), and keratin 1 (KRT1). The expression profiles are provided as bar graphs. Keywords: Real-time PCR, Gene expression profile, Fibroblast, Keratinocyte, Neem extract, Azadirachta indica, Kohomb

    Antioxidant activities of traditional plants in Sri Lanka by DPPH free radical-scavenging assay

    No full text
    This article describes free radical-scavenging activities of extracts of several plants harvested in Sri Lanka through the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. These plants have traditionally been used in the indigenous systems of medicine in Sri Lanka, such as Ayurveda, as described below. (English name, “local name in Sri Lanka,” (scientific name)).bougainvillea plant, “bouganvilla,” (Bougainvillea grabla), purple fruited pea eggplant,”welthibbatu,” (Solanum trilobatum) [1], country borage plant, “kapparawalliya,” (Plectranthus amboinicus) [2], malabar nut plant, “adhatoda,” (Justicia adhatoda) [3], long pepper plant,”thippili,” (Piper longum) [4], holy basil plant, “maduruthala,” (Ocimum tenuiflorum) [5], air plant, “akkapana,” (Kalanchoe pinnata) [6], plumed cockscomb plant, “kiri-henda,” (Celosia argentea) [7], neem plant,”kohomba,” (Azadirachta indica) [8], balipoovu plant, “polpala,” (Aerva lanata) [9], balloon-vine plant, “wel penera,” (Cardiospermum halicacabum) [10], emblic myrobalan plant, “nelli,” (Phyllanthus emblica) [11], indian copperleaf plant, “kuppameniya,” (Acalypha indica) [12], spreading hogweed plant, “pita sudu sarana,” (Boerhavia diffusa) [13], curry leaf plant, “karapincha,” (Murraya koenigii) [14], indian pennywort plant, “gotukola,” (Centera asiatica) [15], jewish plum plant, “ambarella,”(Spondias dulcis) [16]. Keywords: Antioxidative activity, DPPH radical-scavenging assay, Traditional plant, Medical her

    Fibroblast and keratinocyte gene expression following exposure to the extracts of holy basil plant (Ocimum tenuiflorum), malabar nut plant (Justicia adhatoda), and emblic myrobalan plant (Phyllanthus emblica)

    No full text
    This data article provides gene expression profiles, determined by using real-time PCR, of fibroblasts and keratinocytes treated with 0.01% and 0.001% extracts of holy basil plant (Ocimum tenuiflorum), sri lankan local name “maduruthala”, 0.1% and 0.01% extracts of malabar nut plant (Justicia adhatoda), sri lankan local name “adayhoda” and 0.003% and 0.001% extracts of emblic myrobalan plant (Phyllanthus emblica), sri lankan local name “nelli”, harvested in Sri Lanka. For fibroblasts, the dataset includes expression profiles for genes encoding hyaluronan synthase 1 (HAS1), hyaluronan synthase 2 (HAS2), hyaluronidase-1 (HYAL1), hyaluronidase-2 (HYAL2), versican, aggrecan, CD44, collagen, type I, alpha 1 (COL1A1), collagen, type III, alpha 1 (COL3A1), collagen, type VII, alpha 1 (COL7A1), matrix metalloproteinase 1 (MMP1), acid ceramidase, basic fibroblast growth factor (bFGF), fibroblast growth factor-7 (FGF7), vascular endothelial growth factor (VEGF), interleukin-1 alpha (IL-1α), cyclooxygenase-2 (cox2), transforming growth factor beta (TGF-β), and aquaporin 3 (AQP3). For keratinocytes, the expression profiles are for genes encoding HAS1, HAS2, HYAL1, HYAL2, versican, CD44, IL-1α, cox2, TGF-β, AQP3, Laminin5, collagen, type XVII, alpha 1 (COL17A1), integrin alpha-6 (ITGA6), ceramide synthase 3 (CERS3), elongation of very long chain fatty acids protein 1 (ELOVL1), elongation of very long chain fatty acids protein 4 (ELOVL4), filaggrin (FLG), transglutaminase 1 (TGM1), and keratin 1 (KRT1). The expression profiles are provided as bar graphs. Keywords: Real-time PCR, Gene expression profile, Fibroblast, Keratinocyte, Holy basil extract, Ocimum tenuiflorum, Maduruthala, Malabar nut plant extract, Justicia adhatoda, Adayhoda, Emblic myrobalan extract, Phyllanthus emblica, Nell

    Data on the inhibitory effect of traditional plants from Sri Lanka against tyrosinase and collagenase

    No full text
    This article describes the inhibitory effects of extracts from 25 plants harvested in Sri Lanka against tyrosinase and collagenase. Inhibitors of these enzymes are common ingredients in cosmetics and medications, which help protect the skin against hyperpigmentation and premature aging. The article also discusses the polyphenol content of the extracts, which is well known to possess antioxidant properties. The extract data from the following plants, which have a long history in Sri Lankan traditional medicine, such as Ayurveda, have been provided: English name, “local name in Sri Lanka,” (scientific name). Indian copperleaf plant, “kuppameniya,” (Acalypha indica); red sandalwood, “madatiya”, (Adenanthera pavonina); balipoovu plant, “polpala,” (Aerva lanata); snap ginger, “heen araththa,” (Alpinia calcarata); bael fruit, “beli,” (Aegle marmelos); coastal waterhyssop, “lunuwila,” (Bacopa monnieri); porcupine flower, “katu karandu,” (Barleria prionitis); balloon-vine plant, “wel penera,” (Cardiospermum halicacabum); water caltrop, “Katupila,” (Flueggea leucopyrus); Indian sarsparilla, “iramusu,” (Hemidesmus indicus); malabar nut plant, “adhatoda,” (Justicia adhatoda); wood apple, “divul,” (Limonia acidissima); holy basil plant, “maduruthala,” (Ocimum tenuiflorum); emblic myrobalan plant, “nelli,” (Phyllanthus emblica); long pepper plant,”thippili,” (Piper longum); country borage plant, “kapparawalliya,” (Plectranthus amboinicus); common sesban, “wel murunga,” (Sesbania sesban); turkey berry, “gona batu,” (Solanum rudepannum Dunal); purple fruited pea eggplant,”welthibbatu,” (Solanum trilobatum); black plum, “madan,” (Syzygium cumini); crape jasmine, “wathusudda,” (Tabernaemontana divaricate); purple tephrosia, “pila,” (Tephrosia purpurea); Chinese chaste tree, “nika,” (Vitex negundo); and arctic snow, “suduidda,” (Wrightia antidysenterica). The inhibitory effects of these plant extracts on tyrosinase and collagenase, as well as polyphenol contents in the extracts, are detailed in Table 1

    Is sustainability certification for biochar the answer to environmental risks?

    Get PDF
    Biochar has the potential to make a major contribution to the mitigation of climate change, and enhancement of plant production. However, in order for biochar to fulfill this promise, the industry and regulating bodies must take steps to manage potential environmental threats and address negative perceptions. The potential threats to the sustainability of biochar systems, at each stage of the biochar life cycle, were reviewed. We propose that a sustainability framework for biochar could be adapted from existing frameworks developed for bioenergy. Sustainable land use policies, combined with effective regulation of biochar production facilities and incentives for efficient utilization of energy, and improved knowledge of biochar impacts on ecosystem health and productivity could provide a strong framework for the development of a robust sustainable biochar industry. Sustainability certification could be introduced to provide confidence to consumers that sustainable practices have been employed along the production chain, particularly where biochar is traded internationally
    corecore