132 research outputs found

    Silencing of the Violaxanthin De-Epoxidase Gene in the Diatom Phaeodactylum tricornutum Reduces Diatoxanthin Synthesis and Non-Photochemical Quenching

    Get PDF
    Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms

    Evolutionary Origins and Functions of the Carotenoid Biosynthetic Pathway in Marine Diatoms

    Get PDF
    Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms

    Trail formation based on directed pheromone deposition

    Get PDF
    We propose an Individual-Based Model of ant-trail formation. The ants are modeled as self-propelled particles which deposit directed pheromones and interact with them through alignment interaction. The directed pheromones intend to model pieces of trails, while the alignment interaction translates the tendency for an ant to follow a trail when it meets it. Thanks to adequate quantitative descriptors of the trail patterns, the existence of a phase transition as the ant-pheromone interaction frequency is increased can be evidenced. Finally, we propose both kinetic and fluid descriptions of this model and analyze the capabilities of the fluid model to develop trail patterns. We observe that the development of patterns by fluid models require extra trail amplification mechanisms that are not needed at the Individual-Based Model level

    Pseudomonas viridiflava, a Multi Host Plant Pathogen with Significant Genetic Variation at the Molecular Level

    Get PDF
    The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan), as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR) and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB), and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species

    Erythropoiesis-stimulating agents in oncology: a study-level meta-analysis of survival and other safety outcomes

    Get PDF
    BACKGROUND: Cancer patients often develop the potentially debilitating condition of anaemia. Numerous controlled studies indicate that erythropoiesis-stimulating agents (ESAs) can raise haemoglobin levels and reduce transfusion requirements in anaemic cancer patients receiving chemotherapy. To evaluate recent safety concerns regarding ESAs, we carried out a meta-analysis of controlled ESA oncology trials to examine whether ESA use affects survival, disease progression and risk of venous-thromboembolic events

    Extra-Intestinal Manifestations of Familial Adenomatous Polyposis

    Get PDF
    Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited disorder, which results from a germ line mutation in the APC (adenomatous polyposis coli) gene. FAP is characterized by the formation of hundreds to thousands of colorectal adenomatous polyps. Although the development of colorectal cancer stands out as the most prevalent complication, FAP is a multisystem disorder of growth. This means, it is comparable to other diseases such as the MEN syndromes, Von Hippel-Lindau disease and neurofibromatosis. However, the incidence of many of its clinical features is much lower. Therefore, a specialized multidisciplinary approach to optimize health care—common for other disorders—is not usually taken for FAP patients. Thus, clinicians that care for and counsel members of high-risk families should have familiarity with all the extra-intestinal manifestations of this syndrome. FAP-related complications, for which medical attention is essential, are not rare and their estimated lifetime risk presumably exceeds 30%. Affected individuals can develop thyroid and pancreatic cancer, hepatoblastomas, CNS tumors (especially medulloblastomas), and various benign tumors such as adrenal adenomas, osteomas, desmoid tumors and dental abnormalities. Due to improved longevity, as a result of better prevention of colorectal cancer, the risk of these clinical problems will further increase

    Optimal foraging and fitness in Columbian ground squirrels

    Full text link
    Optimal diets were determined for each of 109 individual Columbian ground squirrels ( Spermophilus columbianus ) at two sites in northwestern Montana. Body mass, daily activity time, and vegetation consumption rates for individuals were measured in the field, along with the average water content of vegetation at each ground squirrel colony. I also measured stomach and caecal capacity and turnover rate of plant food through the digestive tract for individuals in the laboratory to construct regressions of digestive capacity as a function of individual body mass. Finally, I obtained literature estimates of average daily energy requirements as a function of body mass and digestible energy content of vegetation. These data were used to construct a linear programming diet model for each individual. The model for each individual was used to predict the proportion of two food types (monocots and dicots) that maximized daily energy intake, given time and digestive constraints on foraging. Individuals were classified as “optimal” or “deviating”, depending on whether their observed diet was significantly different from their predicted optimal diet. I determined the consequences of selecting an optimal diet for energy intake and fitness. As expected, daily energy intake calculated for deviators (based on their observed diet proportion) was less than that for optimal foragers. Deviating foragers do not appear to compensate for their lower calculated energy intake through other factors such as body size or physiological efficiency of processing food. Growth rate, yearly survivorship, and litter size increase with calculated energy intake, and optimal foragers have six times the reproductive success of deviators by age three. Optimal foraging behavior, therefore, appears to confer a considerable fitness advantage.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47783/1/442_2004_Article_BF00318534.pd

    Models and measurements of energy-dependent quenching

    Get PDF
    Energy-dependent quenching (qE) in photosystem II (PSII) is a pH-dependent response that enables plants to regulate light harvesting in response to rapid fluctuations in light intensity. In this review, we aim to provide a physical picture for understanding the interplay between the triggering of qE by a pH gradient across the thylakoid membrane and subsequent changes in PSII. We discuss how these changes alter the energy transfer network of chlorophyll in the grana membrane and allow it to switch between an unquenched and quenched state. Within this conceptual framework, we describe the biochemical and spectroscopic measurements and models that have been used to understand the mechanism of qE in plants with a focus on measurements of samples that perform qE in response to light. In addition, we address the outstanding questions and challenges in the field. One of the current challenges in gaining a full understanding of qE is the difficulty in simultaneously measuring both the photophysical mechanism of quenching and the physiological state of the thylakoid membrane. We suggest that new experimental and modeling efforts that can monitor the many processes that occur on multiple timescales and length scales will be important for elucidating the quantitative details of the mechanism of qE
    corecore