187 research outputs found

    Sexual dimorphism in the size and shape of the raptorial pedipalps of Giant Whip Spiders (Arachnida: Amblypygi)

    Get PDF
    Sexual dimorphism in the form of elaborate crests, horns and swellings can be a clear indicator of the differing evolutionary pressures to which males and females are subject. However, dimorphism can also be expressed in more subtle shape differences not outwardly obvious to the observer. Whip spiders (Amblypygi) possess a unique pair of spined pedipalps hypothesized to primarily function in prey capture, but also serving multiple other functions. Little is known regarding the intraspecific shape variation of these limbs and its potential causes. Because a role during courtship and male contest has also been hypothesized, sexual selection may contribute to shape differences. As such, we hypothesize that sexual dimorphism will be present in the size and shape of amblypygid pedipalps, with male contest selecting for longer and thicker pedipalps, and larger spines in males. This study aims to test this hypothesis, by quantifying the contribution of ontogeny and sexual dimorphism to shape within the raptorial pedipalps of Damon variegatus. Discriminant function analysis using GMM landmark data reveals statistically significant sexual shape dimorphism in both the tibia and femur of the pedipalp. Contrary to our hypothesis, males display a more gracile pedipalp morphology with reduced spination. Sex differences in the allometric slope and overall size were also found in a number of linear appendicular metrics using Type-II regression. Males have statistically longer pedipalp tibiae, whip femora, and leg two femora. We propose that males have evolved a longer pedipalps in the context of display contest rather than physical aggression. The elongation of structures used in display-based contest and courtship found herein further emphasizes the contribution of visual cues to the evolution of morphology more broadly

    Distortion of the Local Magnetic Field Appears to Neither Disrupt Nocturnal Navigation nor Cue Shelter Recognition in the Amblypygid \u3ci\u3eParaphrynus laevifrons\u3c/i\u3e

    Get PDF
    Many arthropods are known to be sensitive to the geomagnetic field and exploit the field to solve spatial problems. The polarity of the geomagnetic field is used, for instance, as an orientation cue by leafcutter ants as they travel on engineered trails in a rainforest and by Drosophila larvae as they move short distances in search of food. A ubiquitous orientation cue like the geomagnetic field may be especially useful in complex, cluttered environments like rainforests, where the reliability of celestial cues used to navigate in more open environments may be poor. The neotropical amblypygid Paraphrynus laevifrons is a nocturnal arachnid that wanders nightly in the vicinity of its shelter and occasionally travels 30 m or more in the rainforest understory before it returns to its shelter. Here, we conducted a field experiment to determine whether navigation by P. laevifrons is guided by the ambient magnetic field and a complementary laboratory experiment to assess whether a magnetic anomaly could be used to pinpoint the entrance of a shelter. In the field experiment, subjects were fitted with a radio transmitter and a small, powerful magnet or a similar-sized brass disk and displaced 10 m from their shelter. The return rate of magnet-fitted subjects was similar to that of brass-fitted subjects and to that of subjects in an earlier study fitted with only a radio transmitter. In the laboratory experiment, we trained P. laevifrons with a protocol under which the amblypygid Phrynus marginemaculatus rapidly learns—in 1–14 trials over two daily sessions—to associate an olfactory stimulus with access to a shelter. The conditioned stimulus here was a magnetic anomaly characterized by a high total field intensity and a 180° reversal of the polarity of the ambient magnetic field. The magnetic anomaly–shelter contingency was not learned in 50 trials conducted over 10 daily sessions. These results imply prima facie that P. laevifrons does not rely on a magnetic compass to locate or recognize a shelter and, perhaps, that the magnetic field cannot be detected, but alternative explanations are discussed

    Arachnida at "Reserva Ducke", Central Amazonia/Brazil

    No full text
    The class Arachnida contains 11 recent orders: Acari, Amblypygi, Araneae, Opiliones, Palpigradi, Pseudoscorpiones, Ricinulei, Schizomida, Scorpiones, Solifugae and Uropygi (Thelyphonida). In total, >570 families, >9165 genera and >93455 species are known world-wide. More than 136 families, >482 genera and >1547 described species occur in Amazonia. Data show, that almost one-fourth of the families presently known in the Arachnida and about 2% of the worlds described species are represented in Amazonia. In the forest reserve 'Reserva Ducke' near Manaus, the Acari-Oribatida represent 45 families, 72 genera and 35 described species, the Aranea 30 families, 143 genera and 295 described species, the Opiliones 5 families, 7 genera and 8 decribed species, the Scorpiones 2 families, 4 genera and 5 described species, the Pseudoscorpiones 6 families, 11 genera, and 15 described species, the Schizomida, 1 family, 2 genera and 2 described species, and the Amblypygi, Palpigradi, Solifugae and Uropygi (Thelyphonida) one species each. Most names are liste

    The First Bromeligenous Species of Dendropsophus (Anura: Hylidae) from Brazil\u27s Atlantic Forest

    Get PDF
    We describe a new treefrog species of Dendropsophus collected on rocky outcrops in the Brazilian Atlantic Forest. Ecologically, the new species can be distinguished from all known congeners by having a larval phase associated with rainwater accumulated in bromeliad phytotelms instead of temporary or lentic water bodies. Phylogenetic analysis based on molecular data confirms that the new species is a member of Dendropsophus; our analysis does not assign it to any recognized species group in the genus. Morphologically, based on comparison with the 96 known congeners, the new species is diagnosed by its small size, framed dorsal color pattern, and short webbing between toes IV-V. The advertisement call is composed of a moderate-pitched two-note call (~5 kHz). The territorial call contains more notes and pulses than the advertisement call. Field observations suggest that this new bromeligenous species uses a variety of bromeliad species to breed in, and may be both territorial and exhibit male parental care

    An Examination of Morphometric Variations in a Neotropical Toad Population (Proceratophrys cristiceps, Amphibia, Anura, Cycloramphidae)

    Get PDF
    The species Proceratophrys cristiceps belongs to the genus Proceratophrys within the family Cycloramphidae. These amphibians are found exclusively in South America in the morphoclimatic domain of the semi-arid depression zones in northeastern Brazil known as the Caatinga. We examined intrapopulational variation using univariate and multivariate statistics with traditional and geometric morphometrics, which supported the existence of two morphotypes of this species. Our results indicated significant degrees of variation in skeletal characteristics between some natural populations of this species. Careful analyses of variability levels are fundamental to avoid taxonomic errors, principally in populations that demonstrate characteristics intimately associated with their area of occurrence, as is the case of Proceratophrys cristiceps

    Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolutionary novelties often appear by conferring completely new functions to pre-existing structures or by innovating the mechanism through which a particular function is performed. Sound production plays a central role in the behavior of frogs, which use their calls to delimit territories and attract mates. Therefore, frogs have evolved complex vocal structures capable of producing a wide variety of advertising sounds. It is generally acknowledged that most frogs call by moving an air column from the lungs through the glottis with the remarkable exception of the family Pipidae, whose members share a highly specialized sound production mechanism independent of air movement.</p> <p>Results</p> <p>Here, we performed behavioral observations in the poorly known African pipid genus <it>Pseudhymenochirus </it>and document that the sound production in this aquatic frog is almost certainly air-driven. However, morphological comparisons revealed an indisputable pipid nature of <it>Pseudhymenochirus </it>larynx. To place this paradoxical pattern into an evolutionary framework, we reconstructed robust molecular phylogenies of pipids based on complete mitochondrial genomes and nine nuclear protein-coding genes that coincided in placing <it>Pseudhymenochirus </it>nested among other pipids.</p> <p>Conclusions</p> <p>We conclude that although <it>Pseudhymenochirus </it>probably has evolved a reversal to the ancestral non-pipid condition of air-driven sound production, the mechanism through which it occurs is an evolutionary innovation based on the derived larynx of pipids. This strengthens the idea that evolutionary solutions to functional problems often emerge based on previous structures, and for this reason, innovations largely depend on possibilities and constraints predefined by the particular history of each lineage.</p
    corecore