7 research outputs found

    Observation of the chiral anomaly induced negative magneto-resistance in 3D Weyl semi-metal TaAs

    Full text link
    Weyl semi-metal is the three dimensional analog of graphene. According to the quantum field theory, the appearance of Weyl points near the Fermi level will cause novel transport phenomena related to chiral anomaly. In the present paper, we report the first experimental evidence for the long-anticipated negative magneto-resistance generated by the chiral anomaly in a newly predicted time-reversal invariant Weyl semi-metal material TaAs. Clear Shubnikov de Haas oscillations (SdH) have been detected starting from very weak magnetic field. Analysis of the SdH peaks gives the Berry phase accumulated along the cyclotron orbits to be {\pi}, indicating the existence of Weyl points.Comment: Submitted in February'1

    Effect of continuous glucose monitoring compared with self-monitoring of blood glucose in gestational diabetes patients with HbA1c<6%: a randomized controlled trial

    Get PDF
    ObjectiveThis study evaluated the effect of continuous glucose monitoring (CGM) versus self-monitored blood glucose (SMGB) in gestational diabetes mellitus (GDM) with hemoglobin A1c (HbA1c) &lt;6%.MethodsFrom January 2019 to February 2021, 154 GDM patients with HbA1c&lt;6% at 24–28 gestational weeks were recruited and assigned randomly to either SMBG only or CGM in addition to SMBG, with 77 participants in each group. CGM was used in combination with fingertip blood glucose monitoring every four weeks until antepartum in the CGM group, while in the SMBG group, fingertip blood glucose monitoring was applied. The CGM metrics were evaluated after 8 weeks, HbA1c levels before delivery, gestational weight gain (GWG), adverse pregnancy outcomes and CGM medical costs were compared between the two groups.ResultsCompared with patients in the SMBG group, the CGM group patients had similar times in range (TIRs) after 8 weeks (100.00% (93.75-100.00%) versus 99.14% (90.97-100.00%), p=0.183) and HbA1c levels before delivery (5.31 ± 0.06% versus 5.35 ± 0.06%, p=0.599). The proportion with GWG within recommendations was higher in the CGM group (59.7% versus 40.3%, p=0.046), and the newborn birth weight was lower (3123.79 ± 369.58 g versus 3291.56 ± 386.59 g, p=0.015). There were no significant differences in prenatal or obstetric outcomes, e.g., cesarean delivery rate, hypertensive disorders, preterm births, macrosomia, hyperbilirubinemia, neonatal hypoglycemia, respiratory distress, and neonatal intensive care unit admission &gt;24 h, between the two groups. Considering glucose monitoring, SMBG group patients showed a lower cost than CGM group patients.ConclusionsFor GDM patients with HbA1c&lt;6%, regular SMBG is a more economical blood glucose monitoring method and can achieve a similar performance in glycemic control as CGM, while CGM is beneficial for ideal GWG

    The application of the mixed system of polyoxyethylene ether and polycarboxylate in 430 g·L<sup>-1</sup> tebuconazole suspension concentrate

    No full text
    The mixed surfactant system is helpful to improve suspension stability of pesticide suspension concentrate(SC). Herein, the effect of the mixed system of polysacchanate dispersant SD-840 and polyoxyethylene ether dispersant 601P on the stability of 430 g·L-1 tebuconazole SC was studied.The changes of the particle size, zeta potential, viscosity, and suspension rate of 430 g·L-1 tebuconazole SC before and after the thermal storage were carefully investigated.The results showed that the suspension stability of 430 g·L-1 tebuconazole SC obtained by the mixed system was superior to that of SC prepared by only SD-840 or 601P, respectively. Especially, the SC obtained by the mixed system with a 0.75 mass ratio between SD-840 and 601P exhibited the superior suspension stability and minimum variation of particle size and suspension rate before and after thermal storage.The suspension rates and D90 particle diameters before and after thermal storage were 99.47%, 96.58% and 2.35 μm, 2.50 μm, respectively

    A Practical Superconducting DC Dynamo for Charging Conduction-Cooled HTS Magnet

    No full text
    At present, HTS magnets cannot operate in the real closed-loop persistent current mode due to the existence of joint resistance, flux creep, and AC loss of the HTS tape. Instead of using a current source, HTS flux pumps are capable of injecting flux into closed HTS magnets without electrical contact. This paper presents a practical superconducting DC dynamo for charging a conduction-cooled HTS magnet system based on a flux-pumping technique. To minimize heat losses, the rotor is driven by a servo motor mounted outside the vacuum dewar by utilizing magnetic fluid dynamic sealing. Different parameters, such as air gap and rotating speed, have been tested to investigate the best pumping effect, and finally, it successfully powers a 27.3 mH HTS non-insulated double-pancake coil to the current of 54.2 A within 76 min. As a low-cost and compact substitute for the traditional current source, the realization of a contactless DC power supply can significantly improve the flexibility and mobility of the HTS magnet system and could be of great significance for the technological innovation of future HTS magnets used in offshore wind turbines, biomedical, aerospace, etc
    corecore