379 research outputs found

    Influence of climatic variables on crown condition in pine forests of Northern Spain

    Get PDF
    Producción CientíficaThe aim of this study was to find relationships between crown condition and some climatic parameters to identify which are those having a main influence on crown condition, and how this influence is shown in the tree (crown transparency), and to contribute to the understanding of how these parameters will affect under future climate change scenarios

    Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom

    Get PDF
    The occurrence of antibiotics in surface waters has been reported worldwide with concentrations ranging from ng L−1 to low µg L−1 levels. During environmental risk assessments, effects of antibiotics on algal species are assessed using standard test protocols (e.g., the OECD 201 guideline), where the cell number endpoint is used as a surrogate for growth. However, the use of photosynthetic related endpoints, such as oxygen evolution rate, and the assessment of effects on algal pigments could help to inform our understanding of the impacts of antibiotics on algal species. This study explored the effects of three major usage antibiotics (tylosin, lincomycin, and trimethoprim) on the growth and physiology of two chlorophytes (Desmodesmus subspicatus and Pseudokirchneriella subcapitata), a cyanobacteria (Anabaena flos-aquae), and a diatom (Navicula pelliculosa) using a battery of parameters, including cell density, oxygen evolution rate, total chlorophyll content, carotenoids, and the irradiance–photosynthesis relationship. The results indicated that photosynthesis of chlorophytes was a more sensitive endpoint than growth (i.e., EC50 derived based on the effects of tylosin on the growth of D. subspicatus was 38.27 µmol L−1 compared with an EC50 of 17.6 µmol L−1 based on photosynthetic rate), but the situation was reversed when testing cyanobacteria and the diatom (i.e., EC50 derived based on the effects of tylosin on the growth of A. flos-aquae was 0.06 µmol L−1; EC50 0.33 µmol L−1 based on photosynthetic rate). The pigment contents of algal cells were affected by the three antibiotics for D. subspicatus. However, in some cases, pigment content was stimulated for P. subcapitata, N. pelliculosa, and A. flos-aquae. The light utilization efficiency of chlorophytes and diatom was decreased markedly in the presence of antibiotics. The results demonstrated that the integration of these additional endpoints into existing standardised protocols could provide useful insights into the impacts of antibiotics on algal species

    Adjusted Light and Dark Cycles Can Optimize Photosynthetic Efficiency in Algae Growing in Photobioreactors

    Get PDF
    Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently

    Colour assessment outcomes – a new approach to grading the severity of color vision loss

    Get PDF
    INTRODUCTION: Recent studies have shown that a significant percentage of subjects with anomalous, congenital trichromacy can perform the suprathreshold, colour-related tasks encountered in many occupations with the same accuracy as normal trichromats. In the absence of detailed, occupation-specific studies, an alternative approach is to make use of new findings and the statistical outcomes of past practices that have been considered safe to produce graded, justifiable categories of colour vision that can be enforced. METHODS: We analyzed traditional color assessment outcomes and measured severity of colour vision loss using the CAD test in 1363 subjects (336 normals, 705 deutan, 319 protan and 3 tritan). The severity of colour vision loss was measured in each subject and statistical, pass / fail outcomes established for each of the most commonly used, conventional colour assessment tests and protocols. RESULTS: The correlation between the number of Ishihara (IH) test plates subjects fail and the severity of RG colour vision loss was very poor. The 38 plates IH test has high sensitivity when no errors are allowed (i.e., only 0.71% deutans and 0.63% protans pass). Protocols based on zero errors are uncommon since 18.15% of normal trichromats fail. The most common protocols employ either the 24 or the 14 plates editions with two or less errors. These protocols pass almost all normal trichromats, but the deutans and some protans that also pass (when two or less errors are allowed) can be severely deficient. This is simply because the most challenging plates have not been included in the 24 and 14 plates editions. As a result, normals no longer fail, but the deutans and protans that pass have more severe loss of colour vision since they fail less challenging plates. The severity of colour vision loss was measured in each subject and statistical, pass / fail outcomes established for each of the most commonly used, conventional colour assessment tests and protocols. DISCUSSION: Historical evidence and new findings that relate severity of loss to the effective use of colour signals in a number of tasks provide the basis for a new colour grading system based on six categories. A single colour assessment test is needed to establish the applicant’s Colour Vision category which can range from ‘supernormal’ (CV0), for the most stringent, colour-demanding tasks, to ‘severe colour deficiency’, when red / green colour vision is either absent or extremely weak (CV5)

    The evolution of the plastid chromosome in land plants: gene content, gene order, gene function

    Get PDF
    This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable
    corecore