32 research outputs found
Provenance of tetraether membrane lipids in a large temperate lake (Loch Lomond, UK): implications for glycerol dialkyl glycerol tetraether (GDGT)-based palaeothermometry
The application of glycerol dialkyl glycerol tetraether (GDGT)-based palaeoenvironmental proxies, such as the branched vs. isoprenoidal tetratether (BIT) index, TEX86 and the MBT–CBT palaeothermometer, has lately been expanded to lacustrine sediments. Given recent research identifying the production of branched, bacterial GDGTs (brGDGTs) within lakes, it is necessary to ascertain the effect of this lacustrine production on GDGT-based proxies. This study profiles a temperate, monomictic lake (Loch Lomond, UK), analysing labile intact polar GDGT lipids (IPLs) and resilient core GDGT lipids (CLs) in catchment soils, small tributary rivers, lake water and lake sediments
Constraints on the sources of branched tetraether membrane lipids in distal marine sediments
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids produced by soil bacteria and occur in near coastal marine sediments as a result of soil organic matter input. Their abundance relative to marine-derived crenarchaeol, quantified in the BIT index, generally decreases offshore. However, in distal marine sediments, low relative amounts of brGDGTs can often still be observed. Sedimentary in situ production as well as dust input have been suggested as potential, though as yet not well constrained, sources. In this study brGDGT distributions in dust were examined and compared with those in distal marine sediments. Dust was sampled along the equatorial West African coast and brGDGTs were detected in most of the samples, albeit in low abundance. Their degree of methylation and cyclisation, expressed in the MBT' (methylation index of branched tetraethers) and DC (degree of cyclisation) indices, respectively, were comparable with those for African soils, their presumed source. Comparison of DC index values for brGDGTS in global soils, Congo deep-sea river fan sediments and dust with those of distal marine sediments clearly showed, however, that distal marine sediments had significantly higher values. This distinctive distribution is suggestive of sedimentary in situ production as a source of brGDGTs in marine sediments, rather than dust input. The presence of in situ produced brGDGTs in marine sediments means that caution should be exercised when applying the MBT'–CBT palaeothermometer to sediments with low BIT index values, i.e. < 0.1, based on our dataset
Interannual and (multi-)decadal variability in the sedimentary BIT index of Lake Challa, East Africa, over the past 2200 years: assessment of the precipitation proxy
The branched vs. isoprenoid tetraether (BIT) index is based on the relative abundance of branched tetraether lipids (brGDGTs) and the isoprenoidal GDGT crenarchaeol. In Lake Challa sediments the BIT index has been applied as a proxy for local monsoon precipitation on the assumption that the primary source of brGDGTs is soil washed in from the lake's catchment. Since then, microbial production within the water column has been identified as the primary source of brGDGTs in Lake Challa sediments, meaning that either an alternative mechanism links BIT index variation with rainfall or that the proxy's application must be reconsidered. We investigated GDGT concentrations and BIT index variation in Lake Challa sediments at a decadal resolution over the past 2200 years, in combination with GDGT time-series data from 45 monthly sediment-trap samples and a chronosequence of profundal surface sediments.Our 2200-year geochemical record reveals high-frequency variability in GDGT concentrations, and therefore in the BIT index, superimposed on distinct lower-frequency fluctuations at multi-decadal to century timescales. These changes in BIT index are correlated with changes in the concentration of crenarchaeol but not with those of the brGDGTs. A clue for understanding the indirect link between rainfall and crenarchaeol concentration (and thus thaumarchaeotal abundance) was provided by the observation that surface sediments collected in January 2010 show a distinct shift in GDGT composition relative to sediments collected in August 2007. This shift is associated with increased bulk flux of settling mineral particles with high Ti?/?Al ratios during March–April 2008, reflecting an event of unusually high detrital input to Lake Challa concurrent with intense precipitation at the onset of the principal rain season that year. Although brGDGT distributions in the settling material are initially unaffected, this soil-erosion event is succeeded by a massive dry-season diatom bloom in July–September 2008 and a concurrent increase in the flux of GDGT-0. Complete absence of crenarchaeol in settling particles during the austral summer following this bloom indicates that no Thaumarchaeota bloom developed at that time. We suggest that increased nutrient availability, derived from the eroded soil washed into the lake, caused the massive bloom of diatoms and that the higher concentrations of ammonium (formed from breakdown of this algal matter) resulted in a replacement of nitrifying Thaumarchaeota, which in typical years prosper during the austral summer, by nitrifying bacteria. The decomposing dead diatoms passing through the suboxic zone of the water column probably also formed a substrate for GDGT-0-producing archaea. Hence, through a cascade of events, intensive rainfall affects thaumarchaeotal abundance, resulting in high BIT index values.Decade-scale BIT index fluctuations in Lake Challa sediments exactly match the timing of three known episodes of prolonged regional drought within the past 250 years. Additionally, the principal trends of inferred rainfall variability over the past two millennia are consistent with the hydroclimatic history of equatorial East Africa, as has been documented from other (but less well dated) regional lake records. We therefore propose that variation in GDGT production originating from the episodic recurrence of strong soil-erosion events, when integrated over (multi-)decadal and longer timescales, generates a stable positive relationship between the sedimentary BIT index and monsoon rainfall at Lake Challa. Application of this paleoprecipitation proxy at other sites requires ascertaining the local processes which affect the productivity of crenarchaeol by Thaumarchaeota and brGDGTs
Land–sea coupling of early Pleistocene glacial cycles in the southern North Sea exhibit dominant Northern Hemisphere forcing
We assess the disputed phase relations between forcing and climatic response in the early Pleistocene with a spliced Gelasian (∼ 2.6–1.8 Ma) multi-proxy record from the southern North Sea basin. The cored sections couple climate evolution on both land and sea during the intensification of Northern Hemisphere glaciation (NHG) in NW Europe, providing the first well-constrained stratigraphic sequence of the classic terrestrial Praetiglian stage. Terrestrial signals were derived from the Eridanos paleoriver, a major fluvial system that contributed a large amount of freshwater to the northeast Atlantic. Due to its latitudinal position, the Eridanos catchment was likely affected by early Pleistocene NHG, leading to intermittent shutdown and reactivation of river flow and sediment transport. Here we apply organic geochemistry, palynology, carbonate isotope geochemistry, and seismostratigraphy to document both vegetation changes in the Eridanos catchment and regional surface water conditions and relate them to early Pleistocene glacial–interglacial cycles and relative sea level changes. Paleomagnetic and palynological data provide a solid integrated timeframe that ties the obliquity cycles, expressed in the borehole geophysical logs, to Marine Isotope Stages (MIS) 103 to 92, independently confirmed by a local benthic oxygen isotope record. Marine and terrestrial palynological and organic geochemical records provide high-resolution reconstructions of relative terrestrial and sea surface temperature (TT and SST), vegetation, relative sea level, and coastal influence.During the prominent cold stages MIS 98 and 96, as well as 94, the record indicates increased non-arboreal vegetation, low SST and TT, and low relative sea level. During the warm stages MIS 99, 97, and 95 we infer increased stratification of the water column together with a higher percentage of arboreal vegetation, high SST, and relative sea level maxima. The early Pleistocene distinct warm–cold alterations are synchronous between land and sea, but lead the relative sea level change by 3000–8000 years. The record provides evidence for a dominantly Northern Hemisphere-driven cooling that leads the glacial buildup and varies on the obliquity timescale. Southward migration of Arctic surface water masses during glacials, indicated by cool-water dinoflagellate cyst assemblages, is furthermore relevant for the discussion on the relation between the intensity of the Atlantic meridional overturning circulation and ice sheet growth
An interlaboratory study of TEX86 and BIT analysis of sediments, extracts and standard mixtures.
Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility ±3-4°C when translated to temperature) but a large spread in BIT measurements (reproducibility ±0.41 on a scale of 0-1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0°C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the "true" (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values
Soil-derived branched tetraether membrane lipids in marine sediments: reconstruction of past continental climate and soil organic matter fluxes to the ocean
This thesis describes the structure and occurrence of branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids, their potential biological origin and shows their application in reconstructions of past environmental conditions. Based on the stereo-configuration of the glycerol backbone, it was concluded that these membrane lipids are synthesised by Bacteria rather than Archaea. As they are abundant in the anoxic part of peat bogs and in world-wide soils, they are expected to be synthesised by anaerobic soil bacteria. Branched GDGTs are fluvially transported to the marine environment where they become part of the marine sedimentary archive. It is shown that their abundance in marine sediments relative to crenarchaeol (an isoprenoid GDGT derived from marine Crenarchaeota), expressed in the Branched vs. Isoprenoid Tetraether (BIT) index, can be used as a proxy for the relative fluvial input of terrestrial organic matter. This proxy was applied in a sediment core from the Bay of Biscay. During the last glacial, when the North Sea and Channel were emerged as result of the sea-level low-stand, this core location was situated in front of the Channel River, which drained all major river catchments of north-western Europe. The BIT index revealed an early reactivation of this river at the onset of the deglaciation. Because of the increased freshwater discharge, a 'lid' of fresh cold water was created on the Bay of Biscay which hindered water evaporation. Consequently, climate on land shifted back to a drier state which was, subsequently, recorded as an abrupt fall in the BIT index in this core. The relative abundance of individual branched GDGTs varied from place to place. Analysis of 134 globally distributed soil samples revealed that the degree of cyclisation, expressed in the Cyclisation ratio of Branched Tetraehters (CBT), is related to soil pH and the degree of methylation, expressed in the Methylation index of Branched Tetraethers (MBT), is related to both soil pH and annual mean air temperature (MAT). This observation could be explained by the fact that micro-organisms adapt the molecular composition of their cell membrane in response to ambient conditions in order to keep their membrane functioning. Using these relations, records of annual MAT and soil pH changes for central Africa were obtained by analysing the branched GDGT distribution in a marine sediment core close to the Congo River outflow. For the annual MAT, this revealed a gradual increase of ~4C since the last glacial. An advantage of reconstructing continental temperatures in a marine core is the possibility to directly compare continental and sea surface temperature changes. This comparison revealed that the temperature difference between land and sea in equatorial Africa exerted a strong control, through the thermal pressure gradient, on African precipitation patterns during the deglaciation. A similar application in a core from the Arctic Ocean revealed a temperature increase of 8C on the Arctic continents during the Palaeocene-Eocene thermal maximum. During this time interval of increased atmospheric greenhouse gas concentrations, subtropical values of 25C were reached which are indicative of a strongly reduced latitudinal thermal gradient
Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX86 proxy and the BIT index
A diverse collection of globally distributed soil samples was analyzed for its glycerol dialkyl glycerol tetraether (GDGT) membrane lipid content. Branched GDGTs, derived from anaerobic soil bacteria, were the most dominant and were found in all soils. Isoprenoid GDGTs, membrane lipids of Archaea, were also present, although in considerably lower concentration. Crenarchaeol, a specific isoprenoid membrane lipid of the non-thermophilic Crenarchaeota, was also regularly detected and its abundance might be related to soil pH. The detection of crenarchaeol in nearly all of the samples is the first report of this type of GDGT membrane lipid in soils and is in agreement with molecular ecological studies, confirming the widespread occurrence of non-thermophilic Crenarchaeota in the terrestrial realm. The fluvial transport of crenarchaeol and other isoprenoid GDGTs to marine and lacustrine environments could possibly bias the BIT index, a ratio between branched GDGTs and crenarchaeol used to determine relative terrestrial organic matter (TOM) input. However, as crenarchaeol in soils is only present in low concentration compared to branched GDGTs, no large effect is expected for the BIT index. The fluvial input of terrestrially derived isoprenoid GDGTs could also bias the TEX86, a proxy used to determine palaeo surface temperatures in marine and lacustrine settings and based on the ratio of cyclopentane-containing isoprenoid GDGTs in marine and lacustrine Crenarchaeota. Indeed, it is shown that a substantial bias in TEX86-reconstructed sea and lake surface temperatures can occur if TOM input is high, e.g. near large river outflows. (c) 2006 Elsevier Ltd. All rights reserved
Bacterial tetraether membrane lipids in peat and coal: Testing the MBT-CBT temperature proxy for climate reconstruction
Peatlands are widespread and important natural archives of environmental change. Here we explore the
potential of the recently introduced MBT–CBT proxy (methylation index and cyclisation ratio of branched
tetraethers) to estimate past annual mean air temperature (MAT) based on the distribution of bacteriallyderived
branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in peat and coal. To this
end, branched GDGTs in an ombrotrophic peat bog from Switzerland and three coal deposits of increasing
maturity were analysed.
For the surface of the bog, reconstructed annual MAT is higher than both measured annual MAT and
measured in situ pore water temperature. Changes in the CBT ratio, considered a proxy for pH, with depth
in the bog do not match with present day in situ pore water pH, but coincide with a peat stratigraphic
boundary. This indicates that GDGTs down the bog profile are predominantly fossil and not derived from
extant biomass. The MBT–CBT derived annual MAT record also shows a large drop at this stratigraphic
boundary, which likely relates to past change in trophic status of the bog. Branched GDGTs are abundant
in an immature lignite (vitrinite reflectance, Ro 0.25%), but occur in low amount in a slightly more mature
coal (Ro 0.32%). Annual MAT could be reconstructed for the lignite alone and is higher than other proxybased
estimates from approximately the same time and location.
Our results indicate potential for the application of the MBT–CBT proxy in peat and immature coals, but
improved constraints on the effects of different types of peat on branched GDGT distributions as well as
improved calibration of MAT estimates are needed before the method can be confidently applied
Comparison of soil derived tetraether membrane lipid distributions and plant-wax δD compositions for reconstruction of Canadian Arctic temperatures
Polar amplification of climate warming has received much attention as these rapidly rising temperatures have the potential to alter ecosystem function and biogeochemical cycles. In particular carbon preserved in Arctic tundra soil and permafrost may be especially vulnerable resulting in carbon cycle perturbations providing an additional positive feedback to climate change. Reliable methods for reconstructing past temperature changes in polar regions have been established from ice cores and marine sediments; however techniques for the continental terrestrial environments are lacking, but are imperative to examine polar amplification of climate warming. Here we compare two molecular methods for reconstructing continental annual mean air temperature (MAT) for the Canadian Arctic based on the distribution of soil bacterial-derived glycerol dialkyl glycerol tetraether (GDGT) membrane lipids (MBT-CBT proxy) and the hydrogen isotopic composition (δD) of plant wax-derived n-alkanes. These two proxies were applied to both modern soil and paleosols collected from the Yukon Territory, Canada, to evaluate both the accuracy of the reconstructed absolute temperatures as well as the relative change in temperature between the Last Glacial and the Holocene. Branched GDGT-based estimates using the recently revised MBT′-CBT calibration are overall higher by ca. 6 °C compared to the original calibration. MAT estimates for modern soils based on the original MBT-CBT calibration are comparable with those based on the δD of extracted C29n-alkanes and instrumental data, however produced a 6 °C higher temperature signal for the glacial paleosols. Therefore, branched GDGT based temperature reconstructions for glacial soils in the high Arctic may represent the higher temperatures at the time of soil formation when bacterial activity was optimal whereas δD of C29n-alkane plant lipids appear to integrate an average annual signal. When used in tandem, these geochemical proxies may provide a more comprehensive method for reconstructing Arctic paleoclimate