85 research outputs found
Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G
Background:
The activating immunoreceptor NKG2D is expressed on Natural Killer (NK) cells and subsets of T cells. NKG2D contributes to anti-tumour and anti-viral immune responses in vitro and in vivo. The ligands for NKG2D in humans are diverse proteins of the MIC and ULBP/RAET families that are upregulated on the surface of virally infected cells and tumours. Two splicing variants of ULBP5/RAET1G have been cloned previously, but not extensively characterised.
Methodology/Principal Findings:
We pursue a number of approaches to characterise the expression, trafficking, and function of the two isoforms of ULBP5/RAET1G. We show that both transcripts are frequently expressed in cell lines derived from epithelial cancers, and in primary breast cancers. The full-length transcript, RAET1G1, is predicted to encode a molecule with transmembrane and cytoplasmic domains that are unique amongst NKG2D ligands. Using specific anti-RAET1G1 antiserum to stain tissue microarrays we show that RAET1G1 expression is highly restricted in normal tissues. RAET1G1 was expressed at a low level in normal gastrointestinal epithelial cells in a similar pattern to MICA. Both RAET1G1 and MICA showed increased expression in the gut of patients with celiac disease. In contrast to healthy tissues the RAET1G1 antiserum stained a wide variety or different primary tumour sections. Both endogenously expressed and transfected RAET1G1 was mainly found inside the cell, with a minority of the protein reaching the cell surface. Conversely the truncated splicing variant of RAET1G2 was shown to encode a soluble molecule that could be secreted from cells. Secreted RAET1G2 was shown to downregulate NKG2D receptor expression on NK cells and hence may represent a novel tumour immune evasion strategy.
Conclusions/Significance:
We demonstrate that the expression patterns of ULBP5RAET1G are very similar to the well-characterised NKG2D ligand, MICA. However the two isoforms of ULBP5/RAET1G have very different cellular localisations that are likely to reflect unique functionality
Mesiodistal root angulation of permanent teeth in children with mixed dentition and normal occlusion
OBJECTIVE: There is little information regarding the mesiodistal angulation of permanent teeth in mixed dentition. The aim of this study was to evaluate mesiodistal root angulation of permanent incisors, canines and first molars of 100 Brazilian children, using a new horizontal reference plane based on the midpoint of the intercuspation of primary canines and permanent first molars in panoramic radiographs during the mixed-dentition phase. MATERIAL AND METHODS: Children were equally divided between the genders with a mean age of 8.9 years (SD=0.76), normal occlusion and no eruptive disturbances. RESULTS: The angulation of the permanent maxillary first molars was close to the vertical, whereas the mandibular molars presented approximately 25 degrees of distal root angulation. The maxillary canines were the most distally angulated teeth, whereas the permanent mandibular canines were vertically positioned. The evaluation of the anterior maxillary area showed vertical position of permanent lateral, and central incisors with a slight distal angulation, whereas the permanent mandibular incisors tended to a mesial radicular convergence. CONCLUSIONS: The proposed reference line could be useful in mixed dentition root angulation evaluation; there was a slight asymmetry in the mesiodistal angulation among homologous teeth, and also a small variation between the male and the female groups, but no difference between 8-and 10-year-old children
The application of Diffusive Gradients in Thin Films (DGT) for improved understanding of metal behaviour at marine disposal sites
Assessment of the effects of sediment metal contamination on biological assemblages and function remains a key question in marine management, especially in relation to disposal activities. However, the appropriate description of bioavailable metal concentrations within pore-waters has rarely been reported. Here, metal behaviour and availability at contaminated dredged material disposal sites within UK waters were investigated using Diffusive Gradient in Thin films (DGT). Three stations, representing contrasting history and presence of dredge disposal were studied. Depth profiles of five metals were derived using DGT probes as well as discrete analysis of total metal concentrations from sliced cores. The metals analysed were: iron and manganese, both relevant to sediment biogeochemistry; cadmium, nickel and lead, classified as priority pollutants. DGT time-integrated labile flux profiles of the metals display behaviour consistent with increasingly reduced conditions at depth and availability to DGT (iron and manganese), subsurface peaks and a potential sedimentary source to the water column related to the disposal activity (lead and nickel) and release to pore-water linked to decomposition of enriched phytodetritus (cadmium). DGT data has the potential to improve our current understanding of metal behaviour at impacted sites and is suitable as a monitoring tool. DGT data can provide information on metal availability and fluxes within the sediment at high depth-resolution (5 mm steps). Differences observed in the resulting profiles between DGT and conventional total metal analysis illustrates the significance of considering both total metals and a potentially labile fraction. The study outcomes can help to inform and improve future disposal site impact assessment, and could be complemented with techniques such as Sediment Profile Imagery for improved biologically relevance, spatial coverage and cost-effective monitoring and sampling of dredge material disposal sites. Additionally, the application of this technology could help improve correlative work on biological impacts under national and international auspices when linking biological effects to more biologically relevant metal concentrations
Simulation-based training in urology residency programmes in the USA: Results of a nationwide survey
Objective: To evaluate the current usage of simulation in urological education in the USA and the barriers to incorporating a simulation-based educational curriculum, as the shift towards competency-based medical education has necessitated the introduction of simulation for training and assessing both non-technical and technical skills. Materials and methods: Residency programme directors at Accreditation Council for Graduate Medical Education (ACGME)-accredited urology training programmes in the USA were invited to respond to an anonymous electronic survey. The study evaluated the programme directors’ experiences and opinions for the current usage of existing urology simulators. The survey also elicited receptiveness and the barriers for incorporating simulation-based training curricula within urology training programmes. Results: In all, 43 completed surveys were received (35% response rate). Amongst responders, 97% (42/43) reported having access to a simulation education centre, and 60% (25/42) have incorporated simulation into their curriculum. A total of 87% (37/43) agreed that there is a role for a standardised simulator training curriculum, and 75% (30/40) agreed that simulators would improve operating room performance. A total of 64% (27/42) agreed that cost was a limiting factor, 12% (5/42) agreed on the cost-effectiveness of simulators, 35% (17/41) agreed there was an increased need for simulator education within work-hour limitations, and 38% (16/42) agreed a simulation programme would reduce patient risks and complications. Conclusions: The majority of urology programme directors consider that there is a role for incorporating a simulation-based curriculum into urology training. Barriers to implementation include cost burden, need for constant technology updates, need for advanced planning, and willingness of faculty to participate in administration. Keywords: Computer simulation, Education, Residency, Curriculu
- …