30 research outputs found
Reader technique as a source of variability in determining malaria parasite density by microscopy
BACKGROUND: Accurate identification and quantification of malaria parasites are critical for measuring clinical trial outcomes. Positive and negative diagnosis is usually sufficient for the assessment of therapeutic outcome, but vaccine or prophylactic drug trials require measuring density of infection as a primary endpoint. Microscopy is the most established and widely-used technique for quantifying parasite densities in the blood. METHODS: Results obtained by 24–27 expert malaria microscopists, who had independently read 895 slides from 35 donors, were analysed to understand how reader technique contributes to discrepancy in measurements of parasite density over a wide range of densities. RESULTS: Among these 35 donations, standard deviations ranged from 30% to 250% of the mean parasite density and the percent discrepancy was inversely correlated with the mean parasite density. The number of white blood cells indexed and whether parasites were counted in the thick film or thin film were shown to significantly contribute to discrepancy amongst microscopists. CONCLUSION: Errors in microscopy measurements are not widely appreciated or addressed but have serious consequences for efficacy trials, including possibly abandoning promising vaccine candidates
Low Efficiency of Homology-Facilitated Illegitimate Recombination during Conjugation in Escherichia coli
Homology-facilitated illegitimate recombination has been described in three naturally competent bacterial species. It permits integration of small linear DNA molecules into the chromosome by homologous recombination at one end of the linear DNA substrate, and illegitimate recombination at the other end. We report that homology-facilitated illegitimate recombination also occurs in Escherichia coli during conjugation with small non-replicative plasmids, but at a low frequency of 3×10−10 per recipient cell. The fate of linear DNA in E. coli is either RecBCD-dependent degradation, or circularisation by ligation, and integration into the chromosome by single crossing-over. We also report that the observed single crossing-overs are recA-dependent, but essentially recBCD, and recFOR independent. This suggests that other, still unknown, proteins may act as mediator for the loading of RecA on DNA during single crossing-over recombination in E. coli
Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated
Reconstruction of cell population dynamics using CFSE
Background: Quantifying cell division and death is central to many studies in the biological
sciences. The fluorescent dye CFSE allows the tracking of cell division in vitro and in vivo and
provides a rich source of information with which to test models of cell kinetics. Cell division and
death have a stochastic component at the single-cell level, and the probabilities of these occurring
in any given time interval may also undergo systematic variation at a population level. This gives rise
to heterogeneity in proliferating cell populations. Branching processes provide a natural means of
describing this behaviour.
Results: We present a likelihood-based method for estimating the parameters of branching
process models of cell kinetics using CFSE-labeling experiments, and demonstrate its validity using
synthetic and experimental datasets. Performing inference and model comparison with real CFSE
data presents some statistical problems and we suggest methods of dealing with them.
Conclusion: The approach we describe here can be used to recover the (potentially variable)
division and death rates of any cell population for which division tracking information is available
High content live cell imaging for the discovery of new antimalarial marine natural products
<p>Abstract</p> <p>Background</p> <p>The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, <it>Plasmodium falciparum</it>.</p> <p>Methods</p> <p>A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown <it>in vitro </it>in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope.</p> <p>Results</p> <p>Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts.</p> <p>Conclusion</p> <p>Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials.</p
Distance to health services influences insecticide-treated net possession and use among six to 59 month-old children in Malawi
<p>Abstract</p> <p>Background</p> <p>Health ministries and providers are rapidly scaling up insecticide-treated nets (ITN) distribution to control malaria, yet possession and proper use typically remain below targeted levels. In Malawi, health facilities (HFs) are currently the principal points of ITN distribution, making it important to understand how access to these ITN sources affects ownership, possession, and use. The authors evaluated the association between proximity to HFs and ITN possession or use among Malawian children six to 59 months of age.</p> <p>Methods</p> <p>A household malaria survey undertaken in eight districts of Malawi during 2007 was used to characterize ITN possession and use. The location of each respondent's household was geocoded as was those of Ministry of Health (MoH) HFs and other health centres. Euclidean distance from each household to the nearest HF was calculated. Patterns of net possession and use were determined through descriptive methods. The authors then analysed the significance of distance and ITN possession/use through standard statistical tests, including logistic regression.</p> <p>Results</p> <p>Median distance to HFs was greater among households that did not possess ITNs and did not use an ITN the previous evening. Descriptive statistical methods confirmed a pattern of decreasing ITN possession and use with increasing distance from HFs. Logistic regression showed the same statistically significant association of distance to HFs, even when controlling for age and gender of the child, ratio of nets to children in household, community net possession and use, and household material wealth.</p> <p>Conclusions</p> <p>Strategies that exclusively distribute ITNs through HFs are likely to be less effective in increasing possession and use in communities that are more distant from those health services. Health providers should look towards community-based distribution services that take ITNs directly to community members to more effectively scale up ITN possession and regular use aimed at protecting children from malaria.</p
DNA Damage Triggers Genetic Exchange in Helicobacter pylori
Many organisms respond to DNA damage by inducing expression of DNA repair genes. We find that the human stomach pathogen Helicobacter pylori instead induces transcription and translation of natural competence genes, thus increasing transformation frequency. Transcription of a lysozyme-like protein that promotes DNA donation from intact cells is also induced. Exogenous DNA modulates the DNA damage response, as both recA and the ability to take up DNA are required for full induction of the response. This feedback loop is active during stomach colonization, indicating a role in the pathogenesis of the bacterium. As patients can be infected with multiple genetically distinct clones of H. pylori, DNA damage induced genetic exchange may facilitate spread of antibiotic resistance and selection of fitter variants through re-assortment of preexisting alleles in this important human pathogen
Global variation in anastomosis and end colostomy formation following left-sided colorectal resection
Background
End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection.
Methods
This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model.
Results
In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001).
Conclusion
Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone
Performance of a malaria microscopy image analysis slide reading device.
BACKGROUND: Viewing Plasmodium in Romanovsky-stained blood has long been considered the gold standard for diagnosis and a cornerstone in management of the disease. This method however, requires a subjective evaluation by trained, experienced diagnosticians and establishing proficiency of diagnosis is fraught with many challenges. Reported here is an evaluation of a diagnostic system (a "device" consisting of a microscope, a scanner, and a computer algorithm) that evaluates scanned images of standard Giemsa-stained slides and reports species and parasitaemia. METHODS: The device was challenged with two independent tests: a 55 slide, expert slide reading test the composition of which has been published by the World Health Organization ("WHO55" test), and a second test in which slides were made from a sample of consenting subjects participating in a malaria incidence survey conducted in Equatorial Guinea (EGMIS test). These subjects' blood was tested by malaria RDT as well as having the blood smear diagnosis unequivocally determined by a worldwide panel of a minimum of six reference microscopists. Only slides with unequivocal microscopic diagnoses were used for the device challenge, n = 119. RESULTS: On the WHO55 test, the device scored a "Level 4" using the WHO published grading scheme. Broken down by more traditional analysis parameters this result was translated to 89% and 70% sensitivity and specificity, respectively. Species were correctly identified in 61% of the slides and the quantification of parasites fell within acceptable range of the validated parasitaemia in 10% of the cases. On the EGMIS test it scored 100% and 94% sensitivity/specificity, with 64% of the species correct and 45% of the parasitaemia within an acceptable range. A pooled analysis of the 174 slides used for both tests resulted in an overall 92% sensitivity and 90% specificity with 61% species and 19% quantifications correct. CONCLUSIONS: In its current manifestation, the device performs at a level comparable to that of many human slide readers. Because its use requires minimal additional equipment and it uses standard stained slides as starting material, its widespread adoption may eliminate the current uncertainty about the quality of microscopic diagnoses worldwide