227 research outputs found

    Updated precision measurement of the average lifetime of B hadrons

    Get PDF
    The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.

    Limits on the production of scalar leptoquarks from Z (0) decays at LEP

    Get PDF
    A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equal to the electromagnetic one. An upper limit is also given on the coupling alpha(lambda) as a function of the leptoquark mass m(D0)

    The measurement of the K1−K2 mass difference

    No full text

    Hadron production in lepton-nucleon scattering

    No full text
    SIGLELD:6413.35F(PB--81-230104)(microfiche). / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Modeling the dynamics of the North Sea's Mesozooplankton

    No full text
    A simple biomass-only zooplankton submodel is presented, describing the dynamics of copepods and carnivorous zooplankton in the North Sea. This submodel together with the other process-oriented submodels (viz. phytoplankton dynamics, the microbial food web, benthic processes, fish dynamics and large-scale advective transport) forms a spatially resolved simulation model of the North Sea ecosystem, the European Regional Seas Ecosystem Model (ERSEM). A large set of field measurements of zooplankton abundance has been assembled against which to compare the ERSEM's performance. These data are not only internally consistent, but have also gathered at the large spatial scales appropriate to the ERSEM. In addition to the spatially resolved, monthly estimates of zooplankton abundance, several instantaneous, in situ estimates of the carbon fluxes between different components of the planktonic web in the northern North Sea are presented. Simulated dynamics are in good agreement with the data only during the mid-summer to mid-winter period. During the latter part of the winter and throughout the spring period zooplankton abundance is underpredicted and the simulated zooplankton growth rate is overpredicted during spring. The excessive decline of mesozooplankton biomass during winter may be caused by failing to capture many of the behavioural/physiological changes which zooplankton manifest during winter. It is suggested that the excessive spring growth is a consequence of a. a failure to properly distinguish between somatic and population growth, b. an inadequate representation of the small scale processes which influence feeding success, and c. an excessive spring phytoplankton bloom. The large phytoplankton bloom is, in part at least, a consequence of the excessively low simulated standing crop of omnivorous zooplankton in spring
    corecore