474 research outputs found

    Tunable variation of optical properties of polymer capped gold nanoparticles

    Full text link
    Optical properties of polymer capped gold nanoparticles of various sizes (diameter 3-6 nm) have been studied. We present a new scheme to extract size dependent variation of total dielectric function of gold nanoparticles from measured UV-Vis absorption data. The new scheme can also be used, in principle, for other related systems as well. We show how quantum effect, surface atomic co - ordination and polymer - nanoparticle interface morphology leads to a systematic variation in inter band part of the dielectric function of gold nanoparticles, obtained from the analysis using our new scheme. Careful analysis enables identification of the possible changes to the electronic band structure in such nanoparticles.Comment: 13 pages,7 figures, 1 tabl

    Comparisons of Statistical Multifragmentation and Evaporation Models for Heavy Ion Collisions

    Get PDF
    The results from ten statistical multifragmentation models have been compared with each other using selected experimental observables. Even though details in any single observable may differ, the general trends among models are similar. Thus these models and similar ones are very good in providing important physics insights especially for general properties of the primary fragments and the multifragmentation process. Mean values and ratios of observables are also less sensitive to individual differences in the models. In addition to multifragmentation models, we have compared results from five commonly used evaporation codes. The fluctuations in isotope yield ratios are found to be a good indicator to evaluate the sequential decay implementation in the code. The systems and the observables studied here can be used as benchmarks for the development of statistical multifragmentation models and evaporation codes.Comment: To appear on Euorpean Physics Journal A as part of the Topical Volume "Dynamics and Thermodynamics with Nuclear Degrees of Freedo

    Coherent electron-phonon coupling and polaron-like transport in molecular wires

    Full text link
    We present a technique to calculate the transport properties through one-dimensional models of molecular wires. The calculations include inelastic electron scattering due to electron-lattice interaction. The coupling between the electron and the lattice is crucial to determine the transport properties in one-dimensional systems subject to Peierls transition since it drives the transition itself. The electron-phonon coupling is treated as a quantum coherent process, in the sense that no random dephasing due to electron-phonon interactions is introduced in the scattering wave functions. We show that charge carrier injection, even in the tunneling regime, induces lattice distortions localized around the tunneling electron. The transport in the molecular wire is due to polaron-like propagation. We show typical examples of the lattice distortions induced by charge injection into the wire. In the tunneling regime, the electron transmission is strongly enhanced in comparison with the case of elastic scattering through the undistorted molecular wire. We also show that although lattice fluctuations modify the electron transmission through the wire, the modifications are qualitatively different from those obtained by the quantum electron-phonon inelastic scattering technique. Our results should hold in principle for other one-dimensional atomic-scale wires subject to Peierls transitions.Comment: 21 pages, 8 figures, accepted for publication in Phys. Rev. B (to appear march 2001

    Continuous variable entanglement and quantum state teleportation between optical and macroscopic vibrational modes through radiation pressure

    Full text link
    We study an isolated, perfectly reflecting, mirror illuminated by an intense laser pulse. We show that the resulting radiation pressure efficiently entangles a mirror vibrational mode with the two reflected optical sideband modes of the incident carrier beam. The entanglement of the resulting three-mode state is studied in detail and it is shown to be robust against the mirror mode temperature. We then show how this continuous variable entanglement can be profitably used to teleport an unknown quantum state of an optical mode onto the vibrational mode of the mirror.Comment: 18 pages, 10 figure

    Isospin Effects in Nuclear Multifragmentation

    Full text link
    We develop an improved Statistical Multifragmentation Model that provides the capability to calculate calorimetric and isotopic observables with precision. With this new model we examine the influence of nuclear isospin on the fragment elemental and isotopic distributions. We show that the proposed improvements on the model are essential for studying isospin effects in nuclear multifragmentation. In particular, these calculations show that accurate comparisons to experimental data require that the nuclear masses, free energies and secondary decay must be handled with higher precision than many current models accord.Comment: 46 pages, 16 figure

    Pharmacologic intervention for prevention of fractures in osteopenic and osteoporotic postmenopausal women: Systemic review and meta-analysis

    Get PDF
    Objectives Emerging evidence has indicated a role for pharmacologic agents in the primary prevention of osteoporotic fracture, but have not yet been systematically reviewed for meta-analysis. We conducted a meta-analysis to evaluate the efficacy of pharmacologic interventions in reducing fracture risk and increasing bone mineral density (BMD) in postmenopausal women with osteopenia or osteoporosis but without prevalent fragility fracture. Method The Medline, EMBASE, and CENTRAL databases were searched from inception to September 30, 2019. Only randomized placebo-controlled trials evaluating postmenopausal women with −1.0 > bone mineral density (BMD) T-score > −2.5 (low bone mass) and those with BMD T-score ≤ −2.5 (osteoporosis) but without baseline fractures, who were receiving anti-osteoporotic agents, providing quantitative outcomes data and evaluating risk of vertebral and/or non-vertebral fragility fracture at follow-up. The PRISMA guidelines were followed, applying a random-effects model. The primary endpoint was the effect of anti-osteoporotic regimens in reducing the incidence of vertebral fractures. Secondary endpoints were percentage changes in baseline BMD at the lumbar spine and total hip at 1 and 2 years follow up. Results Full-text review of 144 articles yielded, 20 for meta-analysis. Bisphosphonates reduced the risk of vertebral fracture (pooled OR = 0.50, 95%CIs = 0.36–0.71) and significantly increased lumbar spine BMD after 1 year, by 4.42% vs placebo (95%CIs = 3.70%–5.14%). At the hip, this value was 2.94% (95%CIs = 2.13%–3.75%). Overall results of limited studies for non-bisphosphonate drugs showed increased BMD and raloxifene significantly decreases the risk of subsequent clinical vertebral fractures. Conclusion The bisphosphonates are efficacious and most evident for the primary prevention of osteoporotic vertebral fractures, reducing their incidence and improving BMD in postmenopausal women with osteopenia or osteoporosis
    corecore