969 research outputs found

    Minigap in a long disordered SNS junction: analytical results

    Full text link
    We review and refine analytical results on the density of states in a long disordered superconductor - normal-metal - superconductor junction with transparent interfaces. Our analysis includes the behavior of the minigap near phase differences zero and PI across the junction, as well as the density of states at energies much larger than the minigap but much smaller than the superconducting gap.Comment: 4 page

    Scattering mechanism in a step-modulated subwavelength metal slit: a multi-mode multi-reflection analysis

    Get PDF
    In this paper, the scattering/transmission inside a step-modulated subwavelength metal slit is investigated in detail. We firstly investigate the scattering in a junction structure by two types of structural changes. The variation of transmission and reflection coefficients depending on structural parameters are analyzed. Then a multi-mode multi-reflection model based on ray theory is proposed to illustrate the transmission in the step-modulated slit explicitly. The key parts of this model are the multi-mode excitation and the superposition procedure of the scatterings from all possible modes, which represent the interference and energy transfer happened at interfaces. The method we use is an improved modal expansion method (MEM), which is a more practical and efficient version compared with the previous one [Opt. Express 19, 10073 (2011)]. In addition, some commonly used methods, FDTD, scattering matrix method, and improved characteristic impedance method, are compared with MEM to highlight the preciseness of these methods.Comment: 25 pages, 9 figure

    Rail vehicle dynamic response to a nonlinear physical ‘in-service’ model of its secondary suspension hydraulic dampers

    Get PDF
    A full nonlinear physical ‘in-service’ model was built for a rail vehicle secondary suspension hydraulic damper with shim-pack-type valves. In the modelling process, a shim pack deflection theory with an equivalent-pressure correction factor was proposed, and a Finite Element Analysis (FEA) approach was applied. Bench test results validated the damper model over its full velocity range and thus also proved that the proposed shim pack deflection theory and the FEA-based parameter identification approach are effective. The validated full damper model was subsequently incorporated into a detailed vehicle dynamics simulation to study how its key in-service parameter variations influence the secondary-suspension-related vehicle system dynamics. The obtained nonlinear physical in-service damper model and the vehicle dynamic response characteristics in this study could be used in the product design optimization and nonlinear optimal specifications of high-speed rail hydraulic dampers

    Growth and properties of ferromagnetic In(1-x)Mn(x)Sb alloys

    Full text link
    We discuss a new narrow-gap ferromagnetic (FM) semiconductor alloy, In(1-x)Mn(x)Sb, and its growth by low-temperature molecular-beam epitaxy. The magnetic properties were investigated by direct magnetization measurements, electrical transport, magnetic circular dichroism, and the magneto-optical Kerr effect. These data clearly indicate that In(1-x)Mn(x)Sb possesses all the attributes of a system with carrier-mediated FM interactions, including well-defined hysteresis loops, a cusp in the temperature dependence of the resistivity, strong negative magnetoresistance, and a large anomalous Hall effect. The Curie temperatures in samples investigated thus far range up to 8.5 K, which are consistent with a mean-field-theory simulation of the carrier-induced ferromagnetism based on the 8-band effective band-orbital method.Comment: Invited talk at 11th International Conference on Narrow Gap Semiconductors, Buffalo, New York, U.S.A., June 16 - 20, 200

    Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes

    Get PDF
    © 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.Peer reviewe

    Solar wind pressure pulse‐driven magnetospheric vortices and their global consequences

    Full text link
    We report the in situ observation of a plasma vortex induced by a solar wind dynamic pressure enhancement in the nightside plasma sheet using multipoint measurements from Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites. The vortex has a scale of 5–10 Re and propagates several Re downtail, expanding while propagating. The features of the vortex are consistent with the prediction of the Sibeck (1990) model, and the vortex can penetrate deep (~8 Re ) in the dawn‐dusk direction and couple to field line oscillations. Global magnetohydrodynamics simulations are carried out, and it is found that the simulation and observations are consistent with each other. Data from THEMIS ground magnetometer stations indicate a poleward propagating vortex in the ionosphere, with a rotational sense consistent with the existence of the vortex observed in the magnetotail. Key Points Solar wind pressure pulse‐driven vortex was observed in the magnetosphere Simulation and ground magnetic field data confirm this tailward moving vortex The vortex can penetrate deep inside the tail plasma sheet and couple to FLRsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107999/1/jgra51112.pd

    Spin Glass Ordering in Diluted Magnetic Semiconductors: a Monte Carlo Study

    Get PDF
    We study the temperature-dilution phase diagram of a site-diluted Heisenberg antiferromagnet on a fcc lattice, with and without the Dzyaloshinskii-Moriya anisotropic term, fixed to realistic microscopic parameters for IIB1xMnxTeIIB_{1-x} Mn_x Te (IIB=Cd, Hg, Zn). We show that the dipolar Dzyaloshinskii-Moriya anisotropy induces a finite-temperature phase transition to a spin glass phase, at dilutions larger than 80%. The resulting probability distribution of the order parameter P(q) is similar to the one found in the cubic lattice Edwards-Anderson Ising model. The critical exponents undergo large finite size corrections, but tend to values similar to the ones of the Edwards-Anderson-Ising model.Comment: 4 pages plus 3 postscript figure

    Crystallization Characteristics of CaO-Al2O3-Based Mold Flux and Their Effects on In-Mold Performance during High-Aluminum TRIP Steels Continuous Casting

    Get PDF
    Crystallization behaviors of the newly developed lime-alumina-based mold fluxes for high-aluminum transformation induced plasticity (TRIP) steels casting were experimentally studied, and compared with those of lime-silica-based mold fluxes. The effects of mold flux crystallization characteristics on heat transfer and lubrication performance in casting high-Al TRIP steels were also evaluated. The results show that the crystallization temperatures of lime-alumina-based mold fluxes are much lower than those of lime-silica-based mold fluxes. Increasing B2O3 addition suppresses the crystallization of lime-alumina-based mold fluxes, while Na2O exhibits an opposite effect. In continuous cooling of lime-alumina-based mold fluxes with high B2O3 contents and a CaO/Al2O3 ratio of 3.3, faceted cuspidine precipitates first, followed by needle-like CaO center dot B2O3 or 9CaO center dot 3B(2)O(3)center dot CaF2. In lime-alumina-based mold flux with low B2O3 content (5.4 mass pct) and a CaO/Al2O3 ratio of 1.2, the formation of fine CaF2 takes place first, followed by blocky interconnected CaO center dot 2Al(2)O(3) as the dominant crystalline phase, and rod-like 2CaO center dot B2O3 precipitates at lower temperature during continuous cooling of the mold flux. In B2O3-free mold flux, blocky interconnected 3CaO center dot Al2O3 precipitates after CaF2 and 3CaO center dot 2SiO(2) formation, and takes up almost the whole crystalline fraction. The casting trials show that the mold heat transfer rate significantly decreases near the meniscus during the continuous casting using lime-alumina-mold fluxes with higher crystallinity, which brings a great reduction of surface depressions on cast slabs. However, excessive crystallinity of mold flux causes poor lubrication between mold and solidifying steel shell, which induces various defects such as drag marks on cast slab. Among the studied mold fluxes, lime-alumina-based mold fluxes with higher B2O3 contents and a CaO/Al2O3 ratio of 3.3 show comparatively improved performance.ope

    A nanotube-based field emission x-ray source for microcomputed tomography

    Get PDF
    Microcomputed tomography (micro-CT) is a noninvasive imaging tool commonly used to probe the internal structures of small animals for biomedical research and for the inspection of microelectronics. Here we report the development of a micro-CT scanner with a carbon nanotube- (CNT-) based microfocus x-ray source. The performance of the CNT x-ray source and the imaging capability of the micro-CT scanner were characterized

    Hydrophobic and ionic-interactions in bulk and confined water with implications for collapse and folding of proteins

    Full text link
    Water and water-mediated interactions determine thermodynamic and kinetics of protein folding, protein aggregation and self-assembly in confined spaces. To obtain insights into the role of water in the context of folding problems, we describe computer simulations of a few related model systems. The dynamics of collapse of eicosane shows that upon expulsion of water the linear hydrocarbon chain adopts an ordered helical hairpin structure with 1.5 turns. The structure of dimer of eicosane molecules has two well ordered helical hairpins that are stacked perpendicular to each other. As a prelude to studying folding in confined spaces we used simulations to understand changes in hydrophobic and ionic interactions in nano droplets. Solvation of hydrophobic and charged species change drastically in nano water droplets. Hydrophobic species are localized at the boundary. The tendency of ions to be at the boundary where water density is low increases as the charge density decreases. Interaction between hydrophobic, polar, and charged residue are also profoundly altered in confined spaces. Using the results of computer simulations and accounting for loss of chain entropy upon confinement we argue and then demonstrate, using simulations in explicit water, that ordered states of generic amphiphilic peptide sequences should be stabilized in cylindrical nanopores
    corecore