462 research outputs found

    A Quantum-Mechanical Equivalent-Photon Spectrum for Heavy-Ion Physics

    Get PDF
    In a previous paper, we calculated the fully quantum-mechanical cross section for electromagnetic excitation during peripheral heavy-ion collisions. Here, we examine the sensitivity of that cross section to the detailed structure of the projectile and target nuclei. At the transition energies relevant to nuclear physics, we find the cross section to be weakly dependent on the projectile charge radius, and to be sensitive to only the leading momentum-transfer dependence of the target transition form factors. We exploit these facts to derive a quantum-mechanical ``equivalent-photon spectrum'' valid in the long-wavelength limit. This improved spectrum includes the effects of projectile size, the finite longitudinal momentum transfer required by kinematics, and the response of the target nucleus to the off-shell photon.Comment: 19 pages, 5 figure

    A Constrained Standard Model from a Compact Extra Dimension

    Full text link
    A SU(3) \times SU(2) \times U(1) supersymmetric theory is constructed with a TeV sized extra dimension compactified on the orbifold S^1/(Z_2 \times Z_2'). The compactification breaks supersymmetry leaving a set of zero modes which correspond precisely to the states of the 1 Higgs doublet standard model. Supersymmetric Yukawa interactions are localized at orbifold fixed points. The top quark hypermultiplet radiatively triggers electroweak symmetry breaking, yielding a Higgs potential which is finite and exponentially insensitive to physics above the compactification scale. This potential depends on only a single free parameter, the compactification scale, yielding a Higgs mass prediction of 127 \pm 8 GeV. The masses of the all superpartners, and the Kaluza-Klein excitations are also predicted. The lightest supersymmetric particle is a top squark of mass 197 \pm 20 GeV. The top Kaluza-Klein tower leads to the \rho parameter having quadratic sensitivity to unknown physics in the ultraviolet.Comment: 31 pages, Latex, 2 eps figures, minor correction

    Constraining the dark energy dynamics with the cosmic microwave background bispectrum

    Full text link
    We consider the influence of the dark energy dynamics at the onset of cosmic acceleration on the Cosmic Microwave Background (CMB) bispectrum, through the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole ll: we show that it is non-zero in a narrow interval centered at a redshift zz satisfying the relation l/r(z)kNL(z)l/r(z)\simeq k_{NL}(z), where the wavenumber corresponds to the scale entering the non-linear phase, and rr is the cosmological comoving distance. The relevant redshift interval is in the range 0.1\lsim z\lsim 2 for multipoles 1000\gsim\ell\gsim 100; the signal amplitude, reflecting the perturbation dynamics, is a function of the cosmological expansion rate at those epochs, probing the dark energy equation of state redshift dependence independently on its present value. We provide a worked example by considering tracking inverse power law and SUGRA Quintessence scenarios, having sensibly different redshift dynamics and respecting all the present observational constraints. For scenarios having the same present equation of state, we find that the effect described above induces a projection feature which makes the bispectra shifted by several tens of multipoles, about 10 times more than the corresponding effect on the ordinary CMB angular power spectrum.Comment: 15 pages, 7 figures, matching version accepted by Physical Review D, one figure improve

    Testing the Nature of Kaluza-Klein Excitations at Future Lepton Colliders

    Get PDF
    With one extra dimension, current high precision electroweak data constrain the masses of the first Kaluza-Klein excitations of the Standard Model gauge fields to lie above 4\simeq 4 TeV. States with masses not much larger than this should be observable at the LHC. However, even for first excitation masses close to this lower bound, the second set of excitations will be too heavy to be produced thus eliminating the possibility of realizing the cleanest signature for KK scenarios. Previous studies of heavy ZZ' and WW' production in this mass range at the LHC have demonstrated that very little information can be obtained about their couplings to the conventional fermions given the limited available statistics and imply that the LHC cannot distinguish an ordinary ZZ' from the degenerate pair of the first KK excitations of the γ\gamma and ZZ. In this paper we discuss the capability of lepton colliders with center of mass energies significantly below the excitation mass to resolve this ambiguity. In addition, we examine how direct measurements obtained on and near the top of the first excitation peak at lepton colliders can confirm these results. For more than one extra dimension we demonstrate that it is likely that the first KK excitation is too massive to be produced at the LHC.Comment: 38 pages, 10 Figs, LaTex, comments adde

    Search for R-Parity Violating Decays of Scalar Fermions at LEP

    Full text link
    A search for pair-produced scalar fermions under the assumption that R-parity is not conserved has been performed using data collected with the OPAL detector at LEP. The data samples analysed correspond to an integrated luminosity of about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle is expected to be unstable. Searches of R-parity violating decays of charged sleptons, sneutrinos and squarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield final states consisting of leptons, jets, or both with or without missing energy. No significant single-like excess of events has been observed with respect to the Standard Model expectations. Limits on the production cross- section of scalar fermions in R-parity violating scenarios are obtained. Constraints on the supersymmetric particle masses are also presented in an R-parity violating framework analogous to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.

    Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2

    Get PDF
    The hadronic structure function of the photon F_2^gamma is measured as a function of Bjorken x and of the factorisation scale Q^2 using data taken by the OPAL detector at LEP. Previous OPAL measurements of the x dependence of F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted by QCD, the data show positive scaling violations in F_2^gamma. Several parameterisations of F_2^gamma are in agreement with the measurements whereas the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001, Ascona, Switzerlan

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays

    Full text link
    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters

    WW Production Cross Section and W Branching Fractions in e+e- Collisions at 189 GeV

    Get PDF
    From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots = 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are selected. Assuming Standard Model W boson decay branching fractions, the W-pair production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +- 0.18(syst.) pb. When combined with previous OPAL measurements, the W boson branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +- 0.28(syst.) % assuming lepton universality. These results are consistent with Standard Model expectations.Comment: 22 pages, 5 figures, submitted to Phys. Lett.
    corecore