338 research outputs found
Trends in body mass index in the pre-dolutegravir period in South Africa
Background: Antiretroviral therapy (ART) is associated with weight gain, but this has been shown to be more marked with dolutegravir and other integrase strand transfer inhibitors.
Objectives: We studied weight gain in people living with HIV (PLWH) on ART compared to the general population in the period before dolutegravir was introduced in a rural South African cohort.
Method: Longitudinal analysis of the Ndlovu Cohort Study including 36–48 months’ follow-up data. From 2014 to 2019, data were collected annually in Limpopo, rural South Africa. Linear mixed models using HIV status, demographics, ART use and cardiovascular risk factors were used to estimate trends in body mass index (BMI) over time.
Results: In total, 1518 adult, non-pregnant participants were included, of whom 518 were PLWH on ART (79.8%), 135 PLWH not yet on ART (20.2%) and 865 HIV-negative. HIV-negative participants had significantly higher BMIs than PLWH on ART at all study visits. There was a significant increase in BMI in all subgroups after 36 months (PLWH on ART, BMI +1.2 kg/m2, P 0.001; PLWH not on ART, BMI +1.8 kg/m2, P 0.001 and HIV-negative, BMI +1.3 kg/m2, P 0.001).
Conclusion: The increase in BMI in PLWH and HIV-negative participants is a serious warning signal as obesity results in morbidity and mortality
Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering
We have measured the beam-normal single-spin asymmetry in elastic scattering
of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 =
0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely
using the elastic nucleon intermediate state, and generally agree with
calculations with significant inelastic hadronic intermediate state
contributions. A_n provides a direct probe of the imaginary component of the
2-gamma exchange amplitude, the complete description of which is important in
the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened
to meet PRL length limit, clarified some text after referee's comment
Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton
scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These
asymmetries, arising from interference of the electromagnetic and neutral weak
interactions, are sensitive to strange quark contributions to the currents of
the proton. The measurements were made at JLab using a toroidal spectrometer to
detect the recoiling protons from a liquid hydrogen target. The results
indicate non-zero, Q^2 dependent, strange quark contributions and provide new
information beyond that obtained in previous experiments.Comment: 5 pages, 2 figure
The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating
elastic scattering of electrons from protons and quasi-elastic scattering from
deuterons is measured in order to determine the neutral weak currents of the
nucleon. Asymmetries as small as 1 part per million in the scattering of a
polarized electron beam are determined using a dedicated apparatus. It consists
of specialized beam-monitoring and control systems, a cryogenic hydrogen (or
deuterium) target, and a superconducting, toroidal magnetic spectrometer
equipped with plastic scintillation and aerogel Cerenkov detectors, as well as
fast readout electronics for the measurement of individual events. The overall
design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering at Q2 = 0.22 and 0.63 GeV2. They are sensitive to strange quark contributions to currents in the nucleon, and to the nucleon axial current. The results indicate strange quark contributions of <∼ 10% of the charge and magnetic nucleon form factors at these four-momentum transfers. We also present the first measurement of anapole moment effects in the axial current at these four-momentum transfer
Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 ≤ Q2 ≤ 1.0 GeV2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrom- eter to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments
Viral capsids: Mechanical characteristics, genome packaging and delivery mechanisms
The main functions of viral capsids are to protect, transport and deliver their genome. The mechanical properties of capsids are supposed to be adapted to these tasks. Bacteriophage capsids also need to withstand the high pressures the DNA is exerting onto it as a result of the DNA packaging and its consequent confinement within the capsid. It is proposed that this pressure helps driving the genome into the host, but other mechanisms also seem to play an important role in ejection. DNA packaging and ejection strategies are obviously dependent on the mechanical properties of the capsid. This review focuses on the mechanical properties of viral capsids in general and the elucidation of the biophysical aspects of genome packaging mechanisms and genome delivery processes of double-stranded DNA bacteriophages in particular
A search for the decay
We search for the rare flavor-changing neutral-current decay in a data sample of 82 fb collected with the {\sl BABAR}
detector at the PEP-II B-factory. Signal events are selected by examining the
properties of the system recoiling against either a reconstructed hadronic or
semileptonic charged-B decay. Using these two independent samples we obtain a
combined limit of
at the 90% confidence level. In addition, by selecting for pions rather than
kaons, we obtain a limit of using only the hadronic B reconstruction method.Comment: 7 pages, 8 postscript figures, submitted to Phys. Rev. Let
High-reflectivity broadband distributed Bragg reflector lattice matched to ZnTe
We report on the realization of a high quality distributed Bragg reflector
with both high and low refractive index layers lattice matched to ZnTe. Our
structure is grown by molecular beam epitaxy and is based on binary compounds
only. The high refractive index layer is made of ZnTe, while the low index
material is made of a short period triple superlattice containing MgSe, MgTe,
and ZnTe. The high refractive index step of Delta_n=0.5 in the structure
results in a broad stopband and the reflectivity coefficient exceeding 99% for
only 15 Bragg pairs.Comment: 4 pages, 3 figure
EuFeAs under high pressure: an antiferromagnetic bulk superconductor
We report the ac magnetic susceptibility and resistivity
measurements of EuFeAs under high pressure . By observing nearly
100% superconducting shielding and zero resistivity at = 28 kbar, we
establish that -induced superconductivity occurs at ~30 K in
EuFeAs. shows an anomalous nearly linear temperature dependence
from room temperature down to at the same . indicates that
an antiferromagnetic order of Eu moments with ~20 K persists
in the superconducting phase. The temperature dependence of the upper critical
field is also determined.Comment: To appear in J. Phys. Soc. Jpn., Vol. 78 No.
- …