19 research outputs found

    Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods

    Get PDF
    We report on the solution of a real-time scheduling problem that arises in the design of software-based operation control of aircraft. A set of tasks has to be distributed on a minimum number of machines and offsets of the tasks have to be computed. The tasks emit jobs periodically starting at their offset and then need to be executed on the machines without any delay. Also, further constraints in terms of memory usage and redundancy requirements have to be met. Approaches based on standard integer programming formulations fail to solve our real-world instances. By exploiting structural insights of the problem we obtain an IP-formulation and primal heuristics that together solve the real-world instances to optimality and outperform text-book approaches by several orders of magnitude. Our methods lead, for the first time, to an industry strength tool to optimally schedule aircraft sized problems

    Same data, different conclusions: Radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis

    Get PDF
    In this crowdsourced initiative, independent analysts used the same dataset to test two hypotheses regarding the effects of scientists’ gender and professional status on verbosity during group meetings. Not only the analytic approach but also the operationalizations of key variables were left unconstrained and up to individual analysts. For instance, analysts could choose to operationalize status as job title, institutional ranking, citation counts, or some combination. To maximize transparency regarding the process by which analytic choices are made, the analysts used a platform we developed called DataExplained to justify both preferred and rejected analytic paths in real time. Analyses lacking sufficient detail, reproducible code, or with statistical errors were excluded, resulting in 29 analyses in the final sample. Researchers reported radically different analyses and dispersed empirical outcomes, in a number of cases obtaining significant effects in opposite directions for the same research question. A Boba multiverse analysis demonstrates that decisions about how to operationalize variables explain variability in outcomes above and beyond statistical choices (e.g., covariates). Subjective researcher decisions play a critical role in driving the reported empirical results, underscoring the need for open data, systematic robustness checks, and transparency regarding both analytic paths taken and not taken. Implications for organizations and leaders, whose decision making relies in part on scientific findings, consulting reports, and internal analyses by data scientists, are discussed

    Evaluation of PECVD deposited boron nitride as copper diffusion barrier on porous low-k materials

    No full text
    Materials Research Society Symposium Proceedings812147-152MRSP

    Sexual Stigma: Putting Sexual Minority Health Issues in Context

    No full text
    corecore