540 research outputs found

    On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported

    Get PDF
    AbstractThis paper presents a bridging research between a modeling methodology in quantum mechanics/relativity and elasticity. Using the symplectic method commonly applied in quantum mechanics and relativity, a new symplectic elasticity approach is developed for deriving exact analytical solutions to some basic problems in solid mechanics and elasticity which have long been bottlenecks in the history of elasticity. In specific, it is applied to bending of rectangular thin plates where exact solutions are hitherto unavailable. It employs the Hamiltonian principle with Legendre’s transformation. Analytical bending solutions could be obtained by eigenvalue analysis and expansion of eigenfunctions. Here, bending analysis requires the solving of an eigenvalue equation unlike in classical mechanics where eigenvalue analysis is only required in vibration and buckling problems. Furthermore, unlike the semi-inverse approaches in classical plate analysis employed by Timoshenko and others such as Navier’s solution, Levy’s solution, Rayleigh–Ritz method, etc. where a trial deflection function is pre-determined, this new symplectic plate analysis is completely rational without any guess functions and yet it renders exact solutions beyond the scope of applicability of the semi-inverse approaches. In short, the symplectic plate analysis developed in this paper presents a breakthrough in analytical mechanics in which an area previously unaccountable by Timoshenko’s plate theory and the likes has been trespassed. Here, examples for plates with selected boundary conditions are solved and the exact solutions discussed. Comparison with the classical solutions shows excellent agreement. As the derivation of this new approach is fundamental, further research can be conducted not only on other types of boundary conditions, but also for thick plates as well as vibration, buckling, wave propagation, etc

    Study on steady-state thermal conduction with singularities in multi-material composites

    Get PDF
    Increasing demand in material and mechanical properties has led to production of complex composite structures. The composite structures, made of different materials, possess a variety of properties derived from each material. This has brought challenges in both analytical and numerical studies in thermal conduction which is of significant importance for thermoelastic problems. Therefore, a unified and effective approach would be desirable. The present study makes a first attempt to determining the analytical symplectic eigen solution for steady-state thermal conduction problem of multi-material crack. Based on the obtained symplectic eigen solution (including higher order expanding eigen solution terms), a new symplectic analytical singular element (SASE) for numerical modeling is constructed. It is concluded that composite structures composed of multi-material with complex geometric shapes can be modeled by the developed method, and the generalized flux intensity factors (GFIFs) can be solved accurately and efficiently

    Nonlinear parameter estimation via the genetic algorithm

    Full text link

    A novel size independent symplectic analytical singular element for inclined crack terminating at bimaterial interface

    Get PDF
    Cracks often exist in composite structures, especially at the interface of two different materials. These cracks can significantly affect the load bearing capacity of the structure and lead to premature failure of the structure. In this paper, a novel element for modeling the singular stress state around the inclined interface crack which terminates at the interface is developed. This new singular element is derived based on the explicit form of the high order eigen solution which is, for the first time, determined by using a symplectic approach. The developed singular element is then applied in finite element analysis and the stress intensity factors (SIFs) for a number of crack configurations are derived. It has been concluded that composites with complex geometric configurations of inclined interface cracks can be accurately simulated by the developed method, according to comparison of the results against benchmarks. It has been found that the stiffness matrix of the proposed singular element is independent of the element size and the SIFs of the crack can be solved directly without any post-processing

    Semileptonic decays of Bs1B_{s1}, Bs2B_{s2}^*, Bs0B_{s0} and Bs1B_{s1}'

    Full text link
    Stimulated by recent observations of the excited bottom-strange mesons Bs1B_{s1} and Bs2B_{s2}^*, we calculate the semileptonic decays Bs0,Bs1,Bs1,Bs2[Ds(1968),Ds(2112),DsJ(2317),DsJ(2460)]νˉB_{s0}, B_{s1}^{\prime}, B_{s1}, B_{s2}^*\to [D_s(1968), D_{s}^*(2112), D_{sJ}(2317), D_{sJ}(2460)]\ell\bar{\nu}, which is relevant for the exploration of the potential of searching these semileptonic decays in experiment.Comment: 11 pages, 3 figures, 9 tables. More discussion added, some descriptions changed. The version to appear in EPJ

    Parton content of the real photon: astrophysical implications

    Full text link
    We possess convincing experimental evidence for the fact that the real photon has non-trivial parton structure. On the other hand, interactions of the cosmic microwave background photons with high energy particles propagating through the Universe play an important role in astrophysics. In this context, to invoke the parton content could be convenient for calculations of the probabilities of different processes involving these photons. As an example, the cross section of inclusive resonant W+W^+ boson production in the reaction νγW+X\nu \gamma\to W^+X is calculated by using the parton language. Neutrino--photon deep inelastic scattering is considered.Comment: 4 pages, 2 figures. The spin states of the initial particles in the reaction νγW+X\nu\gamma\to W^+X are correctly treated. As a result, the corresponding cross section becomes two times greater than the one from the previous version. Some changes in the tex

    Long-Term Efficacy and Safety of Adalimumab in Pediatric Patients with Crohn's Disease

    Get PDF
    Background: IMAgINE 1 assessed 52-week efficacy and safety of adalimumab in children with moderate to severe Crohn's disease. Long-Term efficacy and safety of adalimumab for patients who entered the IMAgINE 2 extension are reported. Methods: Patients who completed IMAgINE 1 could enroll in IMAgINE 2. Endpoints assessed from weeks 0 to 240 of IMAgINE 2 were Pediatric Crohn's Disease Activity Index remission (Pediatric Crohn's Disease Activity Index ≤ 10) and response (Pediatric Crohn's Disease Activity Index decrease ≥15 from IMAgINE 1 baseline) using observed analysis and hybrid nonresponder imputation (hNRI). For hNRI, discontinued patients were imputed as failures unless they transitioned to commercial adalimumab (with study site closure) or adult care, where last observation was carried forward. Corticosteroid-free remission in patients receiving corticosteroids at IMAgINE 1 baseline, discontinuation of immunomodulators (IMMs) in patients receiving IMMs at IMAgINE 2 baseline, and linear growth improvement were reported as observed. Adverse events were assessed for patients receiving ≥1 adalimumab dose in IMAgINE 1 and 2 through January 2015. Results: Of 100 patients enrolled in IMAgINE 2, 41% and 48% achieved remission and response (hNRI) at IMAgINE 2 week 240. Remission rates were maintained by 45% (30/67, hNRI) of patients who entered IMAgINE 2 in remission. At IMAgINE 2 week 240, 63% (12/19) of patients receiving corticosteroids at IMAgINE 1 baseline achieved corticosteroid-free remission and 30% (6/20) of patients receiving IMMs at IMAgINE 2 baseline discontinued IMMs. Adalimumab treatment led to growth velocity normalization. No new safety signals were identified. Conclusions: Efficacy and safety profiles of prolonged adalimumab treatment in children with Crohn's disease were consistent with IMAgINE 1 and adult Crohn's disease adalimumab trials

    Au+Au Reactions at the AGS: Experiments E866 and E917

    Full text link
    Particle production and correlation functions from Au+Au reactions have been measured as a function of both beam energy (2-10.7AGeV) and impact parameter. These results are used to probe the dynamics of heavy-ion reactions, confront hadronic models over a wide range of conditions and to search for the onset of new phenomena.Comment: 12 pages, 14 figures, Talk presented at Quark Matter '9

    Electroweak Precision Constraints on Vector-like Fermions

    Get PDF
    We calculate the oblique electroweak corrections and confront with the experiments in an extension of the Standard Model. The new fields added are a vector-like weak doublet and a singlet fermion. After electroweak symmetry breaking there is a mixing between the components of the new fields, but no mixing allowed with the standard fermions. Four electroweak parameters, S^\hat{S}, T^\hat{T}, W, Y are presented in the formalism of Barbieri et al., these are the generalization of the Peskin-Takeuchi S, T, U's. The vector-like extension is slightly constrained, T^\hat{T} requires the new neutral fermion masses not to be very far from each other, allowing higher mass difference for higher masses and smaller mixing. S^,W,Y\hat{S}, W, Y gives practically no constraints on the masses. This extension can give a positive contribution to T^\hat{T} , allowing a heavy Higgs boson in electroweak precision tests of the Standard Model.Comment: 11 pages, 3 figures, references added,sign correction, conclusion about heavy Higgs has change

    Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm

    Get PDF
    The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.Comment: 375 authors from 57 institutions, 18 pages, 4 figures, 2 tables. Submitted to Physics Letters B. v2 fixes technical errors in matching authors to institutions. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore