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Abstract

This paper presents a bridging research between a modeling methodology in quantum mechanics/relativity and elastic-
ity. Using the symplectic method commonly applied in quantum mechanics and relativity, a new symplectic elasticity
approach is developed for deriving exact analytical solutions to some basic problems in solid mechanics and elasticity
which have long been bottlenecks in the history of elasticity. In specific, it is applied to bending of rectangular thin plates
where exact solutions are hitherto unavailable. It employs the Hamiltonian principle with Legendre’s transformation. Ana-
lytical bending solutions could be obtained by eigenvalue analysis and expansion of eigenfunctions. Here, bending analysis
requires the solving of an eigenvalue equation unlike in classical mechanics where eigenvalue analysis is only required in
vibration and buckling problems. Furthermore, unlike the semi-inverse approaches in classical plate analysis employed by
Timoshenko and others such as Navier’s solution, Levy’s solution, Rayleigh–Ritz method, etc. where a trial deflection
function is pre-determined, this new symplectic plate analysis is completely rational without any guess functions and
yet it renders exact solutions beyond the scope of applicability of the semi-inverse approaches. In short, the symplectic
plate analysis developed in this paper presents a breakthrough in analytical mechanics in which an area previously unac-
countable by Timoshenko’s plate theory and the likes has been trespassed. Here, examples for plates with selected bound-
ary conditions are solved and the exact solutions discussed. Comparison with the classical solutions shows excellent
agreement. As the derivation of this new approach is fundamental, further research can be conducted not only on other
types of boundary conditions, but also for thick plates as well as vibration, buckling, wave propagation, etc.
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1. Introduction

Symplecticity is a mathematical concept of geometry. A symplectic group is a classical group and it was
first used and defined by Weyl (1939) by borrowing a term from the Greek. The theory on symplectic
geometry can be referred to Koszul and Zou (1986). Since then, the use of symplectic space has been
exploited in a number of fields in physics and mathematics for many years particularly in relativity
and gravitation (Kauderer, 1994), and classical and quantum mechanics (De Gosson, 2001) including
the famous Yang-Mills field theory (Krauth and Staudacher, 2000), etc. In elasticity and Hamiltonian
mechanics, the computational approach for symplectic Hamiltonian systems including fluid dynamics
was first developed by Feng and his associates including Feng (1985, 1986a,b); Qin (1990); Feng and
Qin (1991). Beginning from 1984, Feng proposed symplectic algorithms based on symplectic geometry
for Hamiltonian systems with finite and infinite dimensions, and on dynamical systems with Lie algebraic
structures, such as contact systems, source free systems, etc, via the corresponding geometry and Lie
group. These algorithms are superior to conventional algorithms in many practical applications, such as
celestial mechanics, molecular dynamics, etc. The contribution of Feng (1985, 1986a, 1986b, with Qin
1991) in symplectic algorithm was particularly significant and important as stated in a memorial article
dedicated to him by Lax (1993).

Unlike Feng and his associates who emphasized on computational algorithm, Zhong and his associates
including Zhong (1991, 1992); Yao and Xu (2001); Yao and Yang (2001); Yao et al. (2007) developed a
new analytical symplectic elasticity approach for deriving exact analytical solutions to some basic problems
in solid mechanics and elasticity since the early 1990s. These problems have long been bottlenecks in the devel-
opment of history of elasticity. It is based on Hamiltonian principle with Legendre’s transformation and ana-
lytical solutions could be obtained by expansion of eigenfunctions. It is rational and systematic with a clearly
defined, step-by-step derivation procedure. The advantage of symplectic approach with respect to the classical
approach by semi-inverse method is at least threefold. First, the symplectic approach alters the classical prac-
tice and concept of solution methodology and many basic problems previously unsolvable or too complicated
to be solved can hence be resolved accordingly. For instance, the conventional approach in plate and shell
theories by Timoshenko has been based on the semi-inverse method with trial 1D or 2D displacement func-
tions, such as Navier’s method and the Levy’s method for plates. The trial functions, however, do not always
exist except in some very special cases of boundary conditions such as plates with two opposite sides simply
supported. Using the symplectic approach, trial functions are not required. Second, it consolidates the many
seemingly scattered and unrelated solutions of rigid body movement and elastic deformation by mapping with
a series of zero and nonzero eigenvalues. Last but not least, the Saint-Venant problems for plain elasticity and
elastic cylinders can be described in a new system of equations and solved. The difficulty of satisfying end
boundary conditions in conventional problems which could only be covered using the Saint-Vanent principle
can also be solved.

As mentioned above, although research on thin plate is abundant and plate bending has been a subject of
study in solid mechanics for more than a century and many exact solutions have been developed (Timoshenko
and Woinowsky-krieger, 1970; Leissa, 1969, 1973; Hutchinson, 1984, 2004; Eisenberger and Alexandrov,
2003; Cheng et al., 2005), the analytical solutions are rather incomplete. They are based on the semi-inverse
method and limited to only plates with two opposite sides simply supported because a trial function satisfying
the boundary conditions is indispensable which does, however, not always exist. Meanwhile, a considerable
amount of work on numerical analysis of plate bending problems has been developed such as the finite element
method (Zienkiewicz and Cheung, 1964; Shih, 1979), finite strip method (Cheung, 1976), and boundary inte-
gral equations (Jaswon and Maiti, 1968). Although these analyses are satisfactory, the numerical methods are
only able to provide numerical solutions within a limited range of validity and therefore a bird’s eye view on
the general behaviour of plate bending cannot be observed.

In this paper, the new symplectic approach is further developed to derived analytical, exact bending solu-
tions for bending of rectangular thin plates. It is based on the Kirchhoff’s classical plate theory (CPT) assum-
ing that normals to the mid-plane before deformation remain straight and normal to the plane after
deformation so that transverse shear strain can be neglected. New exact bending solutions for rectangular thin
plates with two opposite sides simply supported are presented and discussed. To verify the accuracy and valid-
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ity of this method, comparison with established exact solutions are illustrated. The analysis can be further
extended to plates with any other combinations of boundary conditions.

2. Symplectic formulation and Hamiltonian variational principle

The coordinate system of a thin, isotropic plate under consideration is illustrated in Fig. 1 where
�a/2 6 x 6 a/2 and 0 6 y 6 b. Exact solution for bending of such a plate is sought. In general, the plate
can be subjected to any arbitrary loading profile and for simplicity, a uniformly distributed load q is treated
here. Hence, the governing equation is
r2r2w ¼ q
D

ð1Þ
where D is the flexural rigidity, w is the transverse deflection of plate midplane and $2 is the Laplace operator.
The strain energy density in terms of curvature is
veðjÞ ¼ 1
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are the curvature vector and elasticity coefficient matrix of material, respectively.
In accordance with the Hellinger–Reissner variational principle for plane elasticity, the Pro-Hellinger–

Reissner variational principle for thin plate bending is introduced as (Hu, 1981; Yao et al., 2007)
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Fig. 1. Coordinate system of a thin plate with dimensions.
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are the operator matrix, bending moment function and bending moment, respectively. Subscripts n and s in
Eq. (4) indicate directions normal and tangential to the boundary, while Cu and Cr are the boundaries with
specified geometric conditions (displacements, gradients, etc.) and natural conditions (forces, moments,
etc.), respectively. Known constants on the boundaries are denoted by �js, �jns, �/s and �/n. Substituting Eqs.
(2), (3a) and (5a–c) into Eq. (4) and using Mx = D(jx + mj y) to eliminate jx yields
d
Z xf

x0

Z b2

b1

jy
_/x þ jxy
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o/y
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þ jxy

o/x
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where an overdot denotes differentiation with respect to x. The state variables Eq. (6) are /x, /y, jy and jxy.
The variation of Eq. (6) yields the Hamiltonian dual equation as
_v ¼ Hv ð7Þ

where the Hamiltonian operator matrix H is defined as
H ¼

0 m o
oy Dð1� m2Þ 0
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oy 0 0 2Dð1� mÞ

0 0 0 � o
oy

0 � 1
D
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oy m o
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2
666664
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and v ¼ f/x;/y ;jy ; jxygT is the state vector for variables.
Applying the method of separation of variables to v yields
vðx; yÞ ¼ nðxÞwðyÞ ð9Þ

Substituting the above expression into Eq. (2) gives
nðxÞ ¼ elx ð10Þ

and the eigenvalue equation
HwðyÞ ¼ lwðyÞ ð11Þ

where l is the eigenvalue and w(y) is the corresponding eigenvector. The eigen-solutions of nonzero
eigenvalues in Eq. (11) may be obtained by expanding the eigenvalue equation. First, the eigenvalues k in
the y-direction can be obtained by substituting
/x ¼ eky /y ¼ eky jy ¼ eky jxy ¼ eky ð12Þ
into Eq. (11). Expanding the determinant yields the eigenvalue equation
k2 þ l2
� 	2 ¼ 0 ð13Þ
with repeated roots k = ±li as the eigenvalues. Hence, the general solutions of nonzero eigenvalues are
/x ¼ A1 cosðlyÞ þ B1 sinðlyÞ þ C1y sinðlyÞ þ D1y cosðlyÞ
/y ¼ A2 sinðlyÞ þ B2 cosðlyÞ þ C2y cosðlyÞ þ D2y sinðlyÞ
jy ¼ A3 cosðlyÞ þ B3 sinðlyÞ þ C3y sinðlyÞ þ D3y cosðlyÞ
jxy ¼ A4 sinðlyÞ þ B4 cosðlyÞ þ C4y cosðlyÞ þ D4y sinðlyÞ ð14Þ
The constants are not all independent. For convenience, A2, B2, C2 and D2 may be chosen as the independent
constants. Substituting Eq. (14) into Eq. (11) yields the relations between these constants. Further substituting
the general solution (14) into the corresponding boundary conditions on both sides y = b1 or b2 yields the tran-
scendental equation of nonzero eigenvalues and the corresponding eigenvectors. Then method of eigenvector
expansion then can be applied.
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Eq. (14) is only valid for the basic eigenvectors with nonzero eigenvalues l. If Jordan form eigen-solution
exists, we should solve the following equation
HwðkÞ ¼ lwðkÞ þ wðk�1Þ ðk ¼ 1; 2; . . .Þ ð15Þ
where superscript k denotes the kth order Jordan form eigen-solution. The Jordan form eigen-solution is
formed by superposing a particular solution resulted from the inhomogeneous term w(k�1) and the solution
of Eq. (14).

3. Plates with two opposite sides simply supported

Consider a plate with two opposite sides simply supported at y = 0 and y = b, the boundary conditions are
My jy¼0;b ¼ 0; wjy¼0;b ¼ 0 ð16Þ
Knowing that My ¼ o/x
ox and jx ¼ 1

D
o/y

oy � mjy ¼ o2w
ox2 , the boundary conditions in Eq. (16) can be replaced by
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The unknown constant a1 in the boundary conditions should be solved first because it is an inhomoge-
neous term. After obtaining the expression for deflection w with respect to boundary condition a1, it ap-
pears that this solution does not satisfy the boundary condition w = 0 on both sides in Eq. (16). It is a
spurious solution and thus should be abandoned. The emergence of this spurious solution of the original
problem is due to the replacement of w = 0 by jx = 0 in the boundary conditions (17). Therefore with
respect to bending of a plate simply supported on two opposite sides, the homogeneous boundary condi-
tions are
/xjy¼0;b ¼ 0;
1

D

o/y

oy
� mjy

� �




y¼0;b

¼ 0 ð18Þ
For a zero eigenvalue, the eigen-solutions are all equal to zero. These are trivial solutions and they do not have
physical interpretation. For nonzero eigenvalues, substituting the general eigen-solutions expressed by Eq.
(14) into the homogeneous boundary conditions (18), and equating the determinant of coefficient matrix to
zero yield the transcendental equation of nonzero eigenvalues for bending of simply supported plate on oppo-
site sides along y = 0 and y = b as
sin2 lbð Þ ¼ 0 ð19Þ
which gives real repeated double roots as
ln ¼
np
b

n ¼ �1;�2; . . .ð Þ ð20Þ
The corresponding basic eigenvector is
wð0Þn ¼

/x
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jxy

0
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1
CCCCA ð21Þ
Then the solution to eigenvalue Eq. (7) is
vð0Þn ¼ elnxwð0Þn ð22Þ
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From the curvature–deflection relation (3a), the deflection of plate can be expressed as
wð0Þn ¼ �
1

l2
n

elnx sinðlnyÞ ð23Þ
where the constants of integration are determined as zero by imposing the boundary conditions w = 0 on both
sides.

Because the eigenvalue ln is a double root, the first-order Jordan form eigen-solution can be solved via
Hwð1Þ ¼ wð0Þ þ lwð1Þ ð24Þ
Imposing the boundary conditions (18) yields
wð1Þn ¼

/x
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Hence the solution to Eq. (7) is
vð1Þn ¼ elnxðxwð0Þn þ wð1Þn Þ ð26Þ
Again from the curvature–deflection relation (3a), the deflection of plate can be expressed as
wð1Þn ¼
1� 2xln

2l3
n

elnx sinðlnyÞ ð27Þ
The eigenvectors in Eqs. (21) and (25) are adjoint symplectic orthogonal because H is a Hamiltonian operator
matrix. The eigenvector symplectic adjoint with wð0Þn should be wð1Þ�n, i.e.
hwð0Þn ;wð1Þ�ni ¼ �
2Db
l2

n

6¼ 0 for n ¼ �1;�2; . . . ð28Þ
while the other eigenvectors are symplectic orthogonal to each other. The symplectic inner product for any
two vectors a, b in a 2n-dimensional phase space W in a real number field R is denoted as <a,b> and it satisfies
four basic properties (Yao et al., 2007).

From the eigenvalues and eigenvectors with adjoint symplectic orthogonality property, the general solution
for plate bending simply supported on both opposite sides can be expressed as
v ¼
X1
n¼1

f ð0Þn vð0Þn þ f ð1Þn vð1Þn þ f ð0Þ�n vð0Þ�n þ f ð1Þ�n vð1Þ�n

� �
ð29Þ
according to the expansion theorem. The equation above strictly satisfies the homogeneous differential equa-
tion in the domain and the homogeneous boundary conditions (18) while f ðkÞn ðk ¼ 0; 1; n ¼ �1;�2; . . .Þ are un-
known constants which can be determined by imposing the remaining two boundary conditions at x = �a/2
and x = a/2.

After determining the constants f ðkÞn , the solution of the original problem for bending deflection of a thin
plate governed by Eq. (1) is
w ¼ �wþ
X1
n¼1

f ð0Þn wð0Þn þ f ð1Þn wð1Þn þ f ð0Þ�n wð0Þ�n þ f ð1Þ�n wð1Þ�n

� �
ð30Þ
where �w is a particular solution with respect to the transverse load q.
For example, the particular solution for a plate with two opposite sides simply supported at y = 0, y = b

and with uniformly distributed load q is
�w ¼ q
24D
ðy4 � 2by3 þ b3yÞ ð31Þ
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and the corresponding curvatures and bending moments are
�jy ¼ q
2D yðy � bÞ; �jx ¼ 0; �jxy ¼ 0

Mx ¼ 1
2
qmyðy � bÞ; My ¼ 1

2
qyðy � bÞ; Mxy ¼ 0

ð32a–fÞ
The expressions of Mx and �jy above can be represented in Fourier series as
Mx ¼
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p3D
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1
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ð33bÞ
which are required to determine the other four constants when the boundary conditions at the remaining two
sides are considered.
4. Exact plate bending solutions and numerical examples

The fundamental presented above is valid for bending of a plate with arbitrary boundary condition. For
presentation purpose, the formulation derived in Section 3 is valid for bending of a thin plate with two oppo-
site sides simply supported at y = 0 and y = b and no restriction is imposed on the remaining two boundaries.
Exact bending solutions for various examples of such plates are presented as follows.
4.1. Fully simply supported plate (SSSS)

A fully simply supported plate denoted as SSSS is solved first because it is a classical problem with well-
established exact solution for comparison. The plate is bounded within a domain �a/2 6 x 6 a/2 and
0 6 y 6 b. In addition to the two simply supported boundary conditions at y = 0, b expressed in Eq. (18),
the additional boundary conditions are
Mxjx¼�a=2 ¼ 0; jy jx¼�a=2 ¼ 0 ð34a; bÞ
in which wjx=±a/2 = 0 is replaced by jyjx=±a/2 = 0. From Eqs. (32) and (34), we obtain
Mxjx¼�a=2 ¼ �Mx ¼ �
1

2
qmyðy � bÞ; jy jx¼�a=2 ¼ �jy ¼ �

q
2D

yðy � bÞ ð35a; bÞ
However, from Eqs. (29) and (5c), we have
Mx ¼
o/y

oy
¼
X1

n¼1
D �f ð0Þn elnxð1� mÞ � f ð1Þn elnx xð1� mÞ þ 3þ m

2ln

 ��

þf ð0Þ�n e�lnxð1� mÞ þ f ð1Þ�n e�lnx xð1� mÞ � 3þ m
2ln

 ��
sinðlnyÞ ð36aÞ

jy ¼
X1

n¼1
f ð0Þn elnx þ f ð1Þn elnx x� 1

2ln

� �
� f ð0Þ�n e�lnx � f ð1Þ�n e�lnx xþ 1

2ln

� � �
sinðlnyÞ ð36bÞ
Substituting x = ±a/2 into Eqs. (36a) and (36b) for the left-hand-side of Eqs. (35a-b) and using the Fourier
series representations of Mx and �jy in Eqs. (33a) and (33b) on the right-hand-side, four set of equations can
be derived. The constants f ð0Þn , f ð1Þn , f ð0Þ�n , f ð1Þ�n can be solved by comparing the coefficients of sin(lny), which
are
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f ð0Þn ¼ f ð0Þ�n ¼ f ð1Þn ¼ f ð1Þ�n ¼ 0 for n ¼ 2; 4; 6; . . .

f ð0Þn ¼ � f ð0Þ�n ¼
qð3þ 2an tanh anÞ

2Dbl3
n cosh an

for n ¼ 1; 3; 5; . . .

f ð1Þn ¼ f ð1Þ�n ¼ �
q

Dbl2
n cosh an

for n ¼ 1; 3; 5; . . . ð37Þ
where
an ¼
anp
2b

for n ¼ 1; 3; 5; . . . ð38Þ
From Eqs. (23), (27), (30), (31) and (37), the bending deflection of a thin plate under uniformly distributed load is
w ¼ q
24D

y4 � 2by3 þ b3y
� 	

þ 2q
Db

X1
n¼1

lnx sinhðlnxÞ � coshðlnxÞ 2þ an tanh anð Þ½ � sinðlnyÞ
l5

n cosh an
ð39Þ
In addition, the general solutions for bending moments and stress resultants of a SSSS plate related to the
state vector v ¼ f/x;/y ; jy ; jxygT can be derived accordingly.

4.2. Plate with two opposite sides simply supported and the others free (SFSF)

A SFSF plate bounded within a domain �a/2 6 x 6 a/2 and 0 6 y 6 b is considered here. In addition to
the two simply supported boundary conditions at y = 0, b expressed in Eq. (18), the additional boundary con-
ditions are
Mxjx¼�a=2 ¼ 0; /xjx¼�a=2 ¼ 0 ð40a; bÞ
where the free shear force condition FVxjx=±a/2 = 0 is replaced by/xjx=±a/2 = 0. From Eqs. (32) and (40), we obtain
Mxjx¼�a=2 ¼ �Mx ¼ �
1

2
qmyðy � bÞ; /xjx¼�a=2 ¼ ��/x ¼ 0 ð41a; bÞ
However, from Eqs. (29) and (5c), we have
Mx ¼
o/y

oy
¼
X1
n¼1

D �f ð0Þn elnxð1� mÞ � f ð1Þn elnx xð1� mÞ þ 3þ m
2ln

 ��

þf ð0Þ�n e�lnxð1� mÞþf ð1Þ�n e�lnx x 1� mð Þ � 3þ m
2ln

 ��
sin lnyð Þ ð42aÞ

/x ¼
X1

n¼1
D f ð0Þn elnxð1� mÞ þ f ð1Þn elnx xð1� mÞ � ð3þ mÞ

2ln

 ��

þf ð0Þ�n e�lnxð1� mÞþf ð1Þ�n e�lnx xð1� mÞ þ ð3þ mÞ
2ln

 ��
sinðlnyÞ

ln
ð42bÞ
Substituting x = ±a/2 into Eqs. (42a) and (42b) for the left-hand-side of Eqs. (41a-b) and using the Fourier
series representations of Mx in Eqs. (33a) on the right-hand-side, four set of equations can be derived. The
constants f ð0Þn , f ð1Þn , f ð0Þ�n , f ð1Þ�n can be solved by comparing the coefficients of sin(lny), which are
f ð0Þn ¼f ð0Þ�n ¼ f ð1Þn ¼ f ð1Þ�n ¼ 0 for n ¼ 2; 4; 6 . . .

f ð0Þn ¼� f ð0Þ�n ¼ �
2qm 3þ mð Þ sinh an � 2ð1� mÞan cosh an½ �

Dbl3
nð1� mÞ ð3þ mÞ sinhð2anÞ � 2ð1� mÞan½ � for n ¼ 1; 3; 5 . . .

f ð1Þn ¼f ð1Þ�n ¼ �
4qm sinh an

Dbl2
n ð3þ mÞ sinhð2anÞ � 2ð1� mÞan½ � for n ¼ 1; 3; 5 . . . ð43Þ
where an is given in Eq. (38).
From Eqs. (23), (27), (30), (31) and (43), the bending deflection of a thin plate under uniformly distributed load is
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w ¼ q
24D
ðy4 � 2by3 þ b3yÞ þ 4q

ð1� mÞbD

X1
n¼1

� m coshðlnxÞ anð1� mÞ cosh an � ð1þ mÞ sinh an½ � � lnxð1� mÞm sinh an sinhðlnxÞg sinðlnyÞf
l5

n anð1� mÞ � ð3þ mÞ cosh an sinh an�½ ð44Þ
In addition, the general solutions for bending moments and stress resultants of a SFSF plate related to the
state vector v ¼ /x;/y ; jy ; jxy

� �T
can be derived accordingly.

4.3. Plate with two opposite sides simply supported and the others clamped (SCSC)

A SCSC plate bounded within a domain �a/2 6 x 6 a/2 and 0 6 y 6 b is considered here. In addition to
the two opposite sides simply supported, the additional boundary conditions are
jy jx¼�a=2 ¼ 0; jxy jx¼�a=2 ¼ 0 ð45a; bÞ
where wjx=±a/2 = 0 is replaced by jyjx=±a/2 = 0 and ow
ox jx¼�a=2 ¼ 0 is replaced by jxyjx=±a/2 = 0.

From Eqs. (32) and (45), we obtain
jy jx¼�a=2 ¼ ��jy ¼ �
q

2D
yðy � bÞ; jxy jx¼�a=2 ¼ ��jxy ¼ 0 ð46a; bÞ
However, from Eq. (29), we have
jy ¼
X1
n¼1

f ð0Þn elnx þ f ð1Þn elnx x� 1

2ln

� �
� f ð0Þ�n e�lnx � f ð1Þ�n e�lnx xþ 1

2ln

� � �
sinðlnyÞ ð47aÞ

jxy ¼
X1
n¼1

f ð0Þn elnx þ f ð1Þn elnx xþ 1

2ln

� �
� f ð0Þ�n e�lnx þ f ð1Þ�n e�lnx x� 1

2ln

� � �
cosðlnyÞ ð47bÞ
Substituting x = ±a/2 into Eqs. (47a) and (47b) for the left-hand-side of Eqs. (46a,b) and using the
Fourier series representations of �jy in Eqs. (33a) and (33b) on the right-hand-side, four set of equa-
tions can be derived. The constants f ð0Þn , f ð1Þn , f ð0Þ�n , f ð1Þ�n can be solved by comparing the coefficients of
sin(lny), which are
f ð0Þn ¼ f ð0Þ�n ¼ f ð1Þn ¼ f ð1Þ�n ¼ 0 for n ¼ 2; 4; 6 . . .

f ð0Þn ¼ �f ð0Þ�n ¼ �
2q 2an cosh an þ sinh anð Þ

Dbl3
n 2an þ sinhð2anÞ½ � for n ¼ 1; 3; 5 . . .

f ð1Þn ¼ f ð1Þ�n ¼ �
4q sinh an

Dbl2
n 2an þ sinhð2anÞ½ � for n ¼ 1; 3; 5 . . . ð48Þ
where an is given in Eq. (38).
From Eqs. (23), (27), (30), (31) and (48), the bending deflection of a thin plate under uniformly distributed

load is
w ¼ q
24D

y4 � 2by3 þ b3y
� 	

þ 4q
bD

�
X1
n¼1

e4an
�

sinðlnyÞ �2 3an þ lnxð Þ½ coshðan � lnxÞ þ ðan þ lnxÞ coshð3an � lnxÞ
�

� 5an

� coshðan þ lnxÞ þ 3lnx coshðan þ lnxÞ þ 2an coshð3an þ lnxÞ � 2lnx coshð3an þ lnxÞ

þ 8 coshð2anÞ coshðlnxÞ sinh an � 4anðan � lnxÞ sinhðan þ lnxÞ�g=½l5
n 1þ 8ane4an � e8an
� 	

�
�

ð49Þ
In addition, the general solutions for bending moments and stress resultants of a SCSC plate related to the
state vector v ¼ f/x;/y ; jy ; jxygT can be derived accordingly.
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4.4. Plate with two opposite sides simply supported, one clamped and one free (SFSC)

A SFSC plate bounded within a domain �a/2 6 x 6 a/2 and 0 6 y 6 b is considered here. In addition to
the two opposite sides simply supported, the additional boundary conditions are
Mxjx¼�a=2 ¼ 0; /xjx¼�a=2 ¼ 0

jy jx¼a=2 ¼ 0; jxy jx¼a=2 ¼ 0 ð50a–dÞ
where the free shear force condition FVx jx=±a/2 = 0 is replaced by /x jx=±a/2 = 0, wjx=±a/2 = 0 is replaced by
jyjx=±a/2 = 0 and ow

ox jx¼�a=2 ¼ 0 is replaced by jxyjx=±a/2 = 0. From Eqs. (32) and (50), we obtain
Mxjx¼�a=2 ¼ �Mx ¼ �
1

2
qmyðy � bÞ; /xjx¼�a=2 ¼ ��/x ¼ 0

jy jx¼a=2 ¼ ��jy ¼ �
q

2D
yðy � bÞ; jxy jx¼a=2 ¼ ��jxy ¼ 0 ð51a–dÞ
However, from Eqs. (29) and (5c), we have
/x ¼
X1

n¼1
D f ð0Þn elnxð1� mÞ þ f ð1Þn elnx x 1� mð Þ � ð3þ mÞ

2ln

 ��

þf ð0Þ�n e�lnxð1� mÞ þ f ð1Þ�n e�lnx xð1� mÞ þ ð3þ mÞ
2ln

 ��
sinðlnyÞ

ln
ð52aÞ

jy ¼
X1

n¼1
f ð0Þn elnx þ f ð1Þn elnx x� 1

2ln

� �
� f ð0Þ�n e�lnx � f ð1Þ�n e�lnx xþ 1

2ln

� � �
sinðlnyÞ ð52bÞ

jxy ¼
X1

n¼1
f ð0Þn elnx þ f ð1Þn elnx xþ 1

2ln

� �
� f ð0Þ�n e�lnx þ f ð1Þ�n e�lnx x� 1

2ln

� � �
cosðlnyÞ ð52cÞ
Substituting x = ±a/2 into Eqs. (52a), (52b) and (52c) for the left-hand-side of Eqs. (51a–d) and using the Fou-
rier series representations of �jy in Eqs. (33b) on the right-hand-side, four set of equations can be derived. The
constants f ð0Þn , f ð1Þn , f ð0Þ�n , f ð1Þ�n can be solved by comparing the coefficients of sin(lny), which are
f ð0Þn ¼ f ð0Þ�n ¼ f ð1Þn ¼ f ð1Þ�n ¼ 0 for n ¼ 2; 4; 6; . . .

f ð0Þn ¼ 2qean e6an 1þ 2anð Þðm� 1Þ 3þ tð Þ � e2an �2an m� 1ð Þ2 þ 8a2
nð�1þ mÞ2 þ 3þ mð Þ2

h i��

�e4anm �1þ mþ 2an 3þ 4anðm� 1Þ þ m½ �f g
��

=Dbl3
n ðm� 1Þ 3þ mð Þ þ e8an m� 1ð Þ 3þ mð Þ � 2e4an 5þ 8a2

n m� 1ð Þ2 þ mð2þ mÞ
h in o

for n ¼ 1; 3; 5 . . .

f ð0Þ�n ¼ �
�

2ean q � �1þ 2anð Þð�1þ mÞð3þ mÞ þ e6anm 3þ mþ 2anð�1þ mÞ½ �
�

� e4an 2anð�1þ mÞ2 þ 8a2
nð�1þ mÞ2 þ ð3þ mÞ2

h i
�e2anm �1þ mþ 2an �3þ 4anðm� 1Þ � m½ �f g

��
=Dbl3

n ðm� 1Þð3þ mÞ þ e8anðm� 1Þð3þ mÞ � 2e4an 5þ 8a2
nðm� 1Þ2 þ mð2þ mÞ

h in o
for n ¼ 1; 3; 5 . . .

f ð1Þn ¼ 4qean �e2an �1þ 4anð Þð�1þ mÞ2 � ð�1þ mÞm� e6anð�1þ mÞð3þ mÞ þ e4anm 3þ 4an �1þ vð Þ þ m½ �
n on o

=Dbl2
n ðm� 1Þð3þ mÞ þ e8anðm� 1Þð3þ mÞ � 2e4an 5þ 8a2

nðm� 1Þ2 þ mð2þ mÞ
h in o

for n ¼ 1; 3; 5 . . .

f ð1Þ�n ¼ � 4ean q �e4anð1þ 4anÞð�1þ mÞ2 þ e2an �3þ 4anð�1þ mÞ � m½ �mþ e6anð�1þ mÞmþ ð�1þ mÞð3þ mÞ
n on o

=Dbl2
n ðm� 1Þð3þ mÞ þ e8anðm� 1Þð3þ mÞ � 2e4an 5þ 8a2

n m� 1ð Þ2 þ mð2þ mÞ
h in o

for n ¼ 1; 3; 5 . . .

ð53Þ
where an is given in Eq. (38).
From Eqs. (23), (27), (30), (31) and (53), the bending deflection of a thin plate under uniformly distributed

load is
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w ¼ q
24D
ðy4 � 2by3 þ b3yÞ þ 8q

bD

X1
n¼1

ffe4an sinðlnyÞf½5þ 4a2
nðm� 1Þ2 þ mð2þ mÞ� coshðan � lnxÞ

þ 3 coshð3an þ lnxÞ þ m coshðlnxÞf½1þ 4a2
nðm� 1Þ þ m� cosh an þ ð�3þ an � 2mÞ coshð3anÞ

þ lnx½�5 sinh an � ðm� 1Þ sinhð3anÞ�g þ mf�lnxð1þ 2mÞ cosh an þ lnxðm� 1Þ coshð3anÞ
þ ½1þ 4a2

nðm� 1Þ þ m� sinh an þ ðan � 1Þ sinhð3anÞg sinhðlnxÞ � anfcoshðlnxÞf4lnxðm� 1Þ cosh an

� 3 sinh an þ mfcoshð3anÞ þ ½5� 4mþ 4m coshð2anÞ� sinh angg þ ½ð3� 7mÞ cosh an þ 2m coshð3anÞ
þ 4lnxðm� 1Þð2m� 1Þ sinh an þ m sinhð3anÞ� sinhðlnxÞg þ lnx sinhðan � lnxÞ
� ½anðm� 3Þ � lnxðm� 1Þðmþ 3Þ� sinhð3an þ lnxÞgg=fl5

nfðm� 1Þðmþ 3Þ þ e8anðm� 1Þðmþ 3Þ
� 2e4an ½5þ 8a2

nðm� 1Þ2 þ mð2þ mÞ�ggg ð54Þ
In addition, the general solutions for bending moments and stress resultants of a SFSC plate related to the
state vector v ¼ f/x;/y ; jy ; jxygT can be derived accordingly.
4.5. Plate with three sides simply supported and the other free (SSSF)

A SSSF plate bounded within a domain �a/2 6 x 6 a/2 and 0 6 y 6 b is considered here. In addition to the
two opposite sides simply supported, the additional boundary conditions are
Mxjx¼�a=2 ¼ 0; jy jx¼�a=2 ¼ 0

Mxjx¼a=2 ¼ 0; /xjx¼a=2 ¼ 0 ð55a–dÞ
in which wjx=±a/2 = 0 is replaced by jy jx=±a/2 = 0 and the free shear force condition FVxjx=±a/2 = 0 is replaced
by /xjx=±a/2 = 0. From Eqs. (32) and (55), we obtain
Mxjx¼�a=2 ¼ �Mx ¼ �
1

2
qmy y � bð Þ; jy




x¼�a=2

¼ ��jy ¼ �
q

2D
y y � bð Þ

Mxjx¼a=2 ¼ �Mx ¼ �
1

2
qmy y � bð Þ; /xjx¼a=2 ¼ ��/x ¼ 0 ð56a–dÞ
However, from Eqs. (29) and (5c), we have
Mx ¼
o/y

oy
¼
X1
n¼1

D �f ð0Þn elnxð1� mÞ � f ð1Þn elnx xð1� mÞ þ 3þ m
2ln

 ��

þf ð0Þ�n e�lnxð1� mÞþf ð1Þ�n e�lnx x 1� mð Þ � 3þ m
2ln

 ��
sinðlnyÞ ð57aÞ

/x ¼
X1

n¼1
D f ð0Þn elnxð1� mÞ þ f ð1Þn elnx x 1� mð Þ � ð3þ mÞ

2ln

 �
þ f ð0Þ�n e�lnx 1� mð Þ

�

þf ð1Þ�n e�lnx x 1� mð Þ þ 3þ mð Þ
2ln

 ��
sin lnyð Þ

ln

ð57bÞ

jy ¼
X1

n¼1
f ð0Þn elnx þ f ð1Þn elnx x� 1

2ln

� �
� f ð0Þ�n e�lnx � f ð1Þ�n e�lnx xþ 1

2ln

� � �
sinðlnyÞ ð57cÞ
Substituting x = ±a/2 into Eqs. (57a), (57b) and (57c) for the left-hand-side of Eqs. (56a-d) and using the Fou-
rier series representations of Mx and �jy in Eqs. (33a) and (33b) on the right-hand-side, four set of equations
can be derived. The constants f ð0Þn , f ð1Þn , f ð0Þ�n , f ð1Þ�n can be solved by comparing the coefficients of sin(lny), which
are
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f ð0Þn ¼ f ð0Þ�n ¼ f ð1Þn ¼ f ð1Þ�n ¼ 0; for n ¼ 2; 4; 6 . . .

f ð0Þn ¼ fe�3an qf�2e2an ½�3þ 6anð�1þ mÞ � m�mþ ð�3þ 2anÞð�1þ mÞð3þ mÞ
þ 2e6anm½3þ 2anð�1þ mÞ þ m� � e4an ½6anð�1þ mÞ2 þ 8a2

nð�1þ mÞ2 þ ð3þ mÞ2�gg
= 2Dbl3

nð�1þ mÞ½�4anð�1þ mÞ þ ð3þ mÞ sinhð4anÞ�; for n ¼ 1; 3; 5 . . .

f ð0Þ�n ¼ fe�3an qf�e6anð�1þ mÞð3þ mÞð3þ 2anÞ þ 2m½3þ 2anð�1þ mÞ þ m�
þ 2e4anm½3þ 6anð�1þ mÞ þ m� � e2an ½�6anð�1þ mÞ2 þ 8a2

nð�1þ mÞ2 þ ð3þ mÞ2�g
= 2Dbl3

nð�1þ mÞ½�4anð�1þ mÞ þ ð3þ mÞ sinhð4anÞ�; for n ¼ 1; 3; 5 . . .

f ð1Þn ¼ 2qeanf3þ mþ e4an ½ð3þ 4anÞð�1þ mÞ � 4m coshð2anÞ�g
Dbl2

n½3þ 8ane4anð�1þ mÞ þ m� e8anð3þ mÞ� ; for n ¼ 1; 3; 5 . . .

f ð1Þ�n ¼
2ean q½�e2anð�3þ 4anÞð�1þ mÞ � 2m� 2e4anmþ e6anð3þ mÞ�

Dbl2
n½3þ 8ane4anð�1þ mÞ þ m� e8anð3þ mÞ� ; for n ¼ 1; 3; 5 . . . ð58Þ
where an is given in Eq. (38).
From Eqs. (23), (27), (30), (31) and (58), the bending deflection of a thin plate under uniformly distributed

load is
w ¼ q
24D

y4 � 2by3 þ b3y
� 	

þ 2q
bD

�
X1
n¼1

��
ean�lnx

�
�2e2 anþlnxð Þ �1þ 3an m� 1ð Þ þ lnx m� 1ð Þ � m½ �mþ e2lnx �2þ an þ lnxð Þ m� 1ð Þ

� ð3þ mÞ � 2e4anm 1þ 3an m� 1ð Þ þ lnx m� 1ð Þ þ m½ � þ 2m �1� an þ lnxþ �1þ an � lnxð Þm½ �

þ e2an 6þ 4a2
n m� 1ð Þ2 þ 3lnx m� 1ð Þ2 � an 5þ 4lnxð Þ m� 1ð Þ2 þ 2m2

h i
þ 2e6anþ2lnxm 1þ anðm� 1Þ þ m� lnx m� 1ð Þ½ � þ e4anþ2lnx �4a2

n m� 1ð Þ2þ
h

3lnx m� 1ð Þ2

þ an �5þ 4lnxð Þ m� 1ð Þ2�2 3þ mð Þ2
i�

sinðlnyÞ
�
= l5

n m� 1ð Þ 8ane4an m� 1ð Þ þ 1� e8an
� 	

3þ mð Þ
� �� ��

ð59Þ
In addition, the general solutions for bending moments and stress resultants of a SSSF plate related to the
state vector v ¼ f/x;/y ; jy ; jxygT can be derived accordingly.
4.6. Plate with three sides simply supported and the other clamped (SSSC)

A SSSC plate bounded within a domain �a/2 6 x 6 a/2 and 0 6 y 6 b is considered here. In addition to the
two opposite sides simply supported, the additional boundary conditions are
Mxjx¼�a=2 ¼ 0; jy jx¼�a=2 ¼ 0

jy jx¼a=2 ¼ 0; jxy jx¼a=2 ¼ 0
ð60a–dÞ
in which wjx=±a/2 = 0is replaced by jyjx=±a/2 = 0 and ow
ox




x¼�a=2

¼ 0 is replaced by jxyjx=±a/2 = 0. From Eqs.
(32) and (60), we obtain
Mxjx¼�a=2 ¼ �Mx ¼ �
1

2
qmyðy � bÞ; jy jx¼�a=2 ¼ ��jy ¼ �

q
2D

yðy � bÞ

jy jx¼a=2 ¼ ��jy ¼ �
q

2D
y y � bð Þ; jxy jx¼a=2 ¼ ��jxy ¼ 0 ð61a–dÞ
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However, from Eqs. (29), we have
Mx ¼
o/y

oy
¼
X1
n¼1

D �f ð0Þn elnxð1� mÞ � f ð1Þn elnx xð1� mÞ þ ð3þ mÞ
2ln

 �
þ f ð0Þ�n e�lnxð1� vÞ

�

þf ð1Þ�n e�lnx xð1� mÞ � ð3þ mÞ
2ln

 ��
sinðlnyÞ ð62aÞ

jy ¼
X1

n¼1
f ð0Þn elnx þ f ð1Þn elnx x� 1

2ln

� �
� f ð0Þ�n e�lnx � f ð1Þ�n e�lnx xþ 1

2ln

� � �
sinðlnyÞ ð62bÞ

jxy ¼
X1

n¼1
f ð0Þn elnx þ f ð1Þn elnx xþ 1

2ln

� �
� f ð0Þ�n e�lnx þ f ð1Þ�n e�lnx x� 1

2ln

� � �
cosðlnyÞ ð62cÞ
Substituting x = ±a/2 into Eqs. (62a), (62b), and (62c) for the left-hand-side of Eqs. (61a-d) and using the
Fourier series representations of Mx and �jy in Eqs. (33a) and (33b) on the right-hand-side, four set of equa-
tions can be derived. The constants f ð0Þn , f ð1Þn , f ð0Þ�n , f ð1Þ�n can be solved by comparing the coefficients of sin(lny),
which are
f ð0Þn ¼ f ð0Þ�n ¼ f ð1Þn ¼ f ð1Þ�n ¼ 0 for n ¼ 2; 4; 6 . . .

f ð0Þn ¼ ean q �3þ 2an þ e2an 2� 12an þ e2an �1þ 2e2an � 4anð Þ 1þ 2anð Þ½ �f g
Dbl3

n �1þ e8an � 8ane4anð Þ for n ¼ 1; 3; 5 . . .

f ð0Þ�n ¼
ean q 2� 4an � e6an 3þ 2anð Þ � e2an �1þ 2anð Þ �1þ 4anð Þ þ e4an 2þ 12anð Þ½ �

Dbl3
n �1þ e8an � 8ane4anð Þ for n ¼ 1; 3; 5 . . .

f ð1Þn ¼ 2ean q 1þ e4an 3þ 4an � 4 cosh 2anð Þ½ �f g
Dbl2

n �1þ e8an � 8ane4anð Þ for n ¼ 1; 3; 5 . . .

f ð1Þ�n ¼ �
2ean q �2þ e2an 3� 2e2an þ e4an � 4anð Þ½ �

Dbl2
n �1þ e8an � 8ane4anð Þ for n ¼ 1; 3; 5 . . . ð63Þ
where an is given in Eq. (38).
From Eqs. (23), (27), (30), (31) and (63), the bending deflection of a thin plate under uniformly distributed

load is
w ¼ q
24D

y4 � 2by3 þ b3y
� 	

þ 4q
bD

X1
n¼1

e4an sin lnyð Þ �2 3an þ lnxð Þ½ cosh an � lnxð Þ
��

þ an þ lnxð Þ cosh 3an � lnxð Þ� 5an cosh an þ lnxð Þ þ 3lnx cosh an þ lnxð Þ
þ 2an cosh 3an þ lnxð Þ � 2lnx cosh 3an þ lnxð Þ þ 8 cosh 2anð Þ cosh lnxð Þ sinh anð Þ
� 4an an � lnxð Þ sinh an þ lnxð Þ�g= 1þ 8e4an � e8an

� 	
l5

n

� ��
ð64Þ
In addition, the general solutions for bending moments and stress resultants of a SSSC plate related to the
state vector v ¼ f/x;/y ; jy ; jxygT can be derived accordingly.

4.7. Comparison and discussion

It is noted that exact analytical solutions for many of the cases above are not presented in (Timoshenko and
Woinowsky-krieger, 1970) only the maximum deflection wmax or deflection at specific locations are given.
Using the approach presented here, the exact deflection solutions for the cases are expressed in Eqs. (39),
(44), (49), (54) (59) and (64) for SSSS, SFSF, SCSC, SFSC, SSSF and SSSC, respectively. In addition, exact
expressions for bending moments and stress resultants can be easily derived using basic relation of elasticity.

Comparison with the results of (Timoshenko and Woinowsky-krieger, 1970) for the six cases above is pre-
sented in Tables 1–6, respectively. It is obvious that excellent comparison is observed in all cases thus indicat-
ing applicability and validity of the symplectic approach for solving exact plate bending solutions. The



Table 3
Deflection and bending moment factors a, b, c for a uniformly loaded SCSC rectangular plate with t = 0.3 at centre of plate x = 0, y = b/2
where l = b for a P b and l = a for a < b

Aspect
ratio a

b

Deflection factor a
where wmax = aql 4/D

Bending moment factor b
where (My)max = bql2

Bending moment factor c
where (Mx)max = cql2

Timoshenko and
Woinowsky-krieger
(1970)

Present Timoshenko and
Woinowsky-krieger
(1970)

Present Timoshenko and
Woinowsky-krieger
(1970)

Present

1/2 0.00260 0.00261079 0.0142 0.0141716 0.0420 0.0420629
2/3 0.00247 0.0024757 0.0179 0.0178003 0.0406 0.0406276
1 0.00192 0.00191714 0.0244 0.0243874 0.0332 0.0332449
3/2 0.00531 0.00532645 0.0585 0.0584803 0.0460 0.0459444
2 0.00844 0.00844500 0.0869 0.0868681 0.0474 0.0473622

Table 4
Deflection and bending moment factors a, b, c for a uniformly loaded SCSF rectangular plate with t = 0.3 where l = b for a P b and l = a

for a < b

Aspect
ratio a

b

Deflection factor a at x = a/2,
y = b/2 where wmax = aql 4/D

Bending moment factor b at
x = a/2, y = b/2 where My = bqb2

Bending moment factor c at x = 0,
y = b/2 where Mx = cqb2

Timoshenko and
Woinowsky-krieger
(1970)

Present Timoshenko and
Woinowsky-krieger
(1970)

Present Timoshenko and
Woinowsky-krieger
(1970)

Present

1/3 0.094 0.0939792 0.0078 0.00782003 0.428 0.427944
1/2 0.0582 0.0582267 0.0293 0.0292631 0.319 0.318975
1 0.0113 0.0112359 0.0972 0.0971846 0.119 0.118407
2 0.0150 0.0149491 0.131 0.130529 0.125 0.124666
3 0.0152 0.0152035 0.133 0.132814 0.125 0.124975

Table 1
Deflection and bending moment factors a, b, c for a uniformly loaded SSSS rectangular plate with t = 0.3 at centre of plate x = 0, y = b/2

Aspect
ratio a

b

Deflection factor a where
wmax = aqb4/D

Bending moment factor b where
(My)max = bqb2

Bending moment factor c where
(Mx)max = cqb2

Timoshenko and
Woinowsky-krieger
(1970)

Present Timoshenko and
Woinowsky-krieger
(1970)

Present Timoshenko and
Woinowsky-krieger
(1970)

Present

1.0 0.00406 0.00406235 0.0479 0.0478864 0.0479 0.0478864
1.2 0.00564 0.00565053 0.0627 0.0626818 0.0501 0.0500809
1.5 0.00772 0.00772402 0.0812 0.0811601 0.0498 0.0498427
1.7 0.00883 0.00883800 0.0908 0.0907799 0.0486 0.0486149
2.0 0.01013 0.0101287 0.1017 0.101683 0.0464 0.0463503

Table 2
Deflection and bending moment factors a, b, c for a uniformly loaded SFSF rectangular plate with t = 0.3 at centre of plate x = 0, y = b/2

Aspect ratio a
b Deflection factor a where

wmax = aqb4/D
Bending moment factor b
where (My )max = bqb2

Bending moment factor c
where (Mx)max = cqb2

Timoshenko and
Woinowsky-krieger
(1970)

Present Timoshenko and
Woinowsky-krieger
(1970)

Present Timoshenko and
Woinowsky-krieger
(1970)

Present

0.5 0.01377 0.0137131 0.1235 0.123642 0.0102* 0.0121476
1.0 0.01309 0.0130937 0.1225 0.122545 0.0271 0.0270782
2.0 0.01289 0.0128873 0.1235 0.123468 0.0364 0.0363888

* This is a possible typing mistake in Timoshenko and Woinowsky-krieger (1970) because the expression for deflection w in Eq. (44) is
identical to that in the reference and hence Mx.
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Table 6
Deflection and bending moment factors a, b, c for a uniformly loaded SSSC rectangular plate with t = 0.3 where l = b for a P b and l = a

for a < b

Aspect
ratio a

b

Deflection factor a at centre x = 0,
y = b/2 w = aql 4/D

Bending moment factor b
at x = a/2, y = b/2 My = bqb2

Bending moment factor c at centre
x = 0, y = b/2 Mx = cqb2

Timoshenko and
Woinowsky-krieger
(1970)

Present Timoshenko and
Woinowsky-krieger
(1970)

Present Timoshenko and
Woinowsky-krieger
(1970)

Present

1/2 0.0093 0.00927022 0.122 0.121513 0.047 0.0468662
2/3 0.0064 0.00644513 0.112 0.112132 0.048 0.0477637
1 0.0028 0.00278549 0.084 0.0838752 0.039 0.0391781
1.5 0.0042 0.00424944 0.111 0.111212 0.054 0.0543760
2 0.0049 0.00487850 0.122 0.0121190 0.060 0.0601393

Table 5
Deflection and bending moment factors a, b, c for a uniformly loaded SSSF rectangular plate with t = 0.3

Aspect
ratio a

b

Deflection factor a at x = 0,
y = b where wmax = aqb4/D

Bending moment factor b at x = 0,
y = b where (My)max = bqb2

Bending moment factor c at centre
x = 0, y = b/2 Mx = cqb2

Timoshenko and
Woinowsky-krieger
(1970)

Present Timoshenko and
Woinowsky-krieger
(1970)

Present Timoshenko and
Woinowsky-krieger
(1970)

Present

1/2 0.00710 0.00709414 0.060 0.0601585 0.022 0.0223242
2/3 0.00968 0.00967944 0.083 0.0832446 0.030 0.0302317
1 0.01286 0.0128524 0.112 0.111701 0.039 0.0389809
2 0.01507 0.0150692 0.132 0.131608 0.041 0.0414129
3 0.01520 0.0152107 0.133 0.132878 0.039 0.0390640
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analysis can be easily extended to bending of plates with other types of boundary conditions and it will con-
stitute the scope of analysis in Part II of this paper.
5. Conclusions

This paper has presented a new breakthrough in applied mechanics in which a bottleneck previously pro-
hibiting availability of exact solutions for bending of plates with arbitrary boundary conditions has been tres-
passed. It is based on a symplectic elasticity approach which has been used previously in quantum mechanics
as well as relativity and other theoretical physics disciplines. The strain energy functional in accordance with
the Pro-Hellinger–Reissner variational principle is derived in a geometrical symplectic space. Using the essen-
tial Hamiltonian principle with Legendre’s transformation, an eigenvalue is obtained and thus solved. It
should be emphasized here that bending analysis here requires solving of an eigenvalue equation which is only
required in vibration and buckling analyses in classical mechanics.

Analytical exact solutions for some cases with two opposite sides simply supported have been presented and
excellent agreement with established solutions has been illustrated in all cases. Exact solutions for other
combinations of boundary conditions where exact solutions are hitherto unavailable will be reported in the
future. Further exact solutions for vibration, buckling and wave propagation in plates can also be obtained
based on a similar symplectic approach. The extension will be explored in due course.
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