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Abstract: Increasing demand in material and mechanical properties has led to production of complex 

composite structures. The composite structures, made of different materials, possess a variety of 

properties derived from each material. This has brought challenges in both analytical and numerical 

studies in thermal conduction which is of significant importance for thermoelastic problems. Therefore, 

a unified and effective approach would be desirable. The present study makes a first attempt to 

determining the analytical symplectic eigen solution for steady-state thermal conduction problem of 

multi-material crack. Based on the obtained symplectic eigen solution (including higher order expanding 

eigen solution terms), a new Symplectic Analytical Singular Element (SASE) for numerical modeling is 

constructed. It is concluded that composite structures composed of multi-material with complex 

geometric shapes can be modeled by the developed method, and the generalized flux intensity factors 

(GFIFs) can be solved accurately and efficiently. 
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Nomenclature 

,A B  coefficients of the general solution of symplectic eigenvector 

A,B matrix composed of eigenvalues 

F  vector of coefficients of the general solution of symplectic eigenvector 

,
T r
f f  vectors composed of eigenvectors' components 

H  Hamiltonian operator matrix 

k  thermal conductivity 

K  stiffness matrix of the symplectic analytical singular element 

L  transform matrix 

M  material 

P  number of export node of the symplectic analytical singular element 
p  parameter which is employed to define crack orientation 

r
q , qθ  heat flux densities 

( , )r θ  polar coordinate system 

R  chain matrix relates the eigenvectors of two adjacent materials 

r
S , Sθ  symplectic dual variables 

t  vector of nodal temperature of the symplectic analytical singular element 
T  temperature 

Z  unknown vector in symplectic solving system 
α  vertex angle of material 

ln( )rξ =  transformation of the radial coordinate 
ρ  radius of the proposed symplectic analytical singular element 
2

∇  Laplacian operator 
µ  symplectic eigenvalue 
invariantµ  singularity invariant 

( )θψ  symplectic eigenvector 

,
T r

ψ ψ  components of the symplectic eigenvector 

1J
ψ  Jordan form eigen vector 

J
ψ   eigen solution formed by the Jordan form eigen vector 
γ  coefficients of symplectic eigen expanding terms 

0Θ =  characteristic equation of symplectic eigenvalue 
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1. Introduction 

Composite materials and structures, such as thermal barrier coatings and electronic packages, are widely 

used in modern engineering applications as a result of increased demand on the properties of materials. 

In the construction of composite materials and structures, different materials are combined together to 

achieve enhanced characteristics that are not attainable by any single one of the materials used. However, 

cracks, such as defects, often arise between the material interfaces due to mismatch of different material 

properties during the fabrication. This could possibly lead to crack propagation under thermal loading. 

Therefore, analysis of heat conduction around multi-material crack tip is of high demand and great 

importance. 

Heat conduction for two Dimensional (2D) homogeneous materials with cracks has been 

investigated by researchers, in which different boundary conditions on the crack surfaces were 

considered
[1, 2]

. Singularity of heat flux in the vicinity of crack tip in homogeneous material has been 

proven to exist with the order of 1/ 2
[2]

. Kuo studied bimaterial interface crack between two semi-

infinite dissimilar media subject to uniform heat flow, and obtained the temperature distribution
[3]

. Chao 

and Shen investigated the interface crack between dissimilar media based on the Hilbert problem 

formulation and the exact solution was given for a single circular-arc crack
[4]

. Chao and Kuo studied 

heat conduction of curvilinear cracks in bounded dissimilar materials with heat source
[5]

. Chiu et al., and 

Tsai et al. investigated thermal conduction of an arbitrary oriented crack in functionally graded 

materials
[6, 7]

. Buroni and his collaborators proposed a new complex-variable formalism for the analysis 

of 3D anisotropic heat transfer problems
[8]

. Marin proposed an invariant method of fundamental 

solutions to investigated 2D steady-state anisotropic heat conduction problems
[9]

. 

For the structures with more general configuration, numerical methods such as extended finite 

element method (XFEM)
[10, 11, 12, 13, 14, 15, 16]

, meshless method
[17, 18]

 and boundary element method 
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(BEM)
[19]

 can be applied to get numerical solutions. Marin proposed a meshless method for the stable 

solution of direct and inverse problems associated with the two-dimensional Laplace equation in  

presence of noisy boundary data and boundary singularities, accurate numerical solutions can be 

obtained even when employing a small number of collocation points and sources
[ 20 ]

. The heat 

conduction problem in fins can be described by using the Helmholtz-type equation
[21]

. Marin studied the 

Helmholtz-type equation and proposed a meshless method for stable and accurate solution of direct and 

inverse problems in presence of boundary singularities; by using this method, the accuracy and 

convergence issues existing in conventional numerical methods were resolved
[22, 23]

. Marin et al.
 
applied  

BEM in solving the Helmholtz-type equation 
[24]

. Mera et al.
 [25, 26]

 studied the Cauchy problem for 

steady-state anisotropic heat conduction problems by using BEM, while the standard BEM formulation 

was modified to take account of the stress singularity. It was demonstrated that the numerical algorithm 

was accurate, computational efficient and stable. Recently, the Singular Boundary Method (SBM) was 

applied to investigate the inverse anisotropic heat conduction problems
[27]

, heat conduction in non-

homogeneous materials
[28]

, and steady-state nonlinear heat conduction problem with temperature-

dependent thermal conductivity
[29]

. Yosibash and his co-workers systematically investigated the steady-

state thermal conduction problems with singularities and obtained numerical solutions of the generalized 

flux intensity factors (GFIF) based on post process operations in conjunction with FEM
[30, 31, 32, 33]

. 

Yvonnet et al. investigated the Kapitza thermal resistance between two dissimilar materials by using 3D 

XFEM in which, the temperature jump across the interface were captured accurately with the aid of 

analytical solution
[34]

. Hosseini et al. studied crack propagation in functional graded materials subject to 

thermal and mechanical loadings by using XFEM, and reported that the implementation of crack tip 

enrichments could lead to substantial decrease of required number of degree of freedoms (DOFs), 

compared with standard FEM. Therefore, the solving efficiency for obtaining the same accuracy and 
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convergence rate can be increased
[35]

. The extended isogeometric analysis was demonstrated to be 

suitable for the analysis of singularity problems
[36, 37]

. Liu et al. studied functionally graded piezoelectric 

materials under thermal shock by the XFEM considering both heating and cooling shocks, the 

generalized dynamic intensity factors for thermal stresses and electrical displacements can be solved 

accurately by using the interaction integral
[38]

. Yu et al. investigated thermal buckling for functionally 

graded plates with internal defects using an extended isogeometric analysis, the trimmed NURBS 

surface to describe the geometrical structure with cutouts is no longer required as the internal 

discontinuity is independent on mesh
[39]

. 

Recently, the symplectic dual approach for elasticity
[40]

 has emerged as a useful tool for the 

analysis of singularity problem. Analytical symplectic eigen solutions for bimaterial crack
[41]

, crack in 

pizeo-electric material
[42, 43]

, and multi-material cracks under mechanical loading
[44]

 were obtained. 

Taking advantage of the existing analytical eigen solutions, a series of analytical singular elements were 

constructed for the numerical study of cracks
[45]

, fatigue crack growth
[46]

, cracks in Reissner plate
[47]

 and 

Dugdale cohesive model based cracks
[48]

. The constructed analytical singular elements for each problem 

were found to be of high accuracy and efficiency. Leung et al. applied the symplectic dual approach to 

study steady-state thermal conduction problem of crack in homogeneous material, and the analytical 

symplectic eigen solution of the discussed problem was obtained
[49]

. In addition, Leung et al. studied 

thermal stress based on the obtained analytical symplectic eigen solution
[50]

. Zhou et al. proposed a 

numerical method based on the obtained symplectic eigen expansion to solve steady-state thermal 

conduction problems in bimaterial cracks
[51]

. 

In light of the extensive literature review for the steady-state thermal conduction problem and other 

crack problems, the combination of near crack tip asymptotic solution and numerical method would 

bring many advantages in the analysis of composite materials with cracks
[52, 53]

. The rich information of 
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thermal variable fields around crack tip expressed in terms of analytical symplectic eigen solution can be 

applied to benefit the solving accuracy and efficiency of GFIFs (or known as eigen expanding 

coefficients). This will result in significant reduction in computing cost. Motivated by this purpose, the 

present study attempts, for the first time, to develop the analytical symplectic eigen solution for steady-

state thermal conduction problem of multi-material crack and construct a new symplectic analytical 

singular element (SASE) based on the obtained analytical symplectic eigen solution. 

The paper is organized as follows: the fundamental equations are summarized in section 2, and the 

sub-coordinate system used in this study is defined in the same section. In section 3, the original 

problem is solved by using the symplectic dual approach and the analytical symplectic eigen solution of 

the discussed problem is obtained. Based on the obtained eigen solution, a SASE for steady-state 

thermal conduction problem of multi-material crack is constructed in section 4. The integration method 

of the proposed SASE as well as the calculation procedures of GFIFs are discussed in section 5. In 

section 6, the singularity order of heat flux in multi-material crack is analyzed. In order to illustrate the 

present SASE, numerical examples are considered in section 7, which is followed by a conclusion in 

section 8. 

2.  Fundamental equations 

Considering a multi-material crack composed of N  ( 1N ≥ ) different materials 1 2
, ,...M M  as shown in Fig.1, 

the sub polar coordinate system 
i i

OCθ  is introduced to describe the -thi  material 
i

M  with vertex angle i
α . 

Thus the range of the angular coordinate for material 
i

M  is always [0, ]
i i
θ α∈ . For the steady-state 

thermal conduction problem, the relationship between the temperature and the heat flux densities in 

material 
i

M  can be specified by: 

 
,

i
r i i

T
q k

r

∂
= −

∂
,    ,

i i
i

i

k T
q

r
θ

θ

∂
= −

∂
, ( 1,2,3,..., )i N=  (1) 

where i
T  is temperature and , ,

[ , ]
r i i
q qθ  is the vector of heat flux densities along each direction, and i

k  is 

the thermal conductivity.  
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The governing equation neglecting the internal heat source can be specified by 

 
2

0
i
T∇ = , ( 1,2,3,..., )i N=  (2) 

where 
2 2 2 2(1/ ) (1/ )

r r
r r θ∇ = ∂ + ∂ + ∂  is the Laplacian operator in the polar coordinate system. The 

compatibility conditions at the interface between material 
i

M  and 
1i

M
+  are specified by 

 
11 0| |

i i i
i i
T Tθ α θ += + =

= , ( 1,2,3,..., 1)i N= −  (3) 

 
1, , 1 0| |

i i ii i
q qθ θ α θ θ += + =

= , ( 1,2,3,..., 1)i N= −  (4) 

Noted that in the sub-coordinate systems 
i i

OCθ  and 
1 1i i

OC θ
+ + , the angular coordinates of the interface 

between material 
i

M  and 
1i

M
+  are i

α  and 0, respectively. The fundamental equations can be derived 

from the following equation of dissipation of quantity of heat written as: 

 
0 0

, 2 2

, , ,

1

δ
1
( ) d d 0

2

i
N

ii i
r i r i i i

i i i

qT T
q q q r r

r r k

α θ
θ θ

θ

∞

=

  ∂ ∂ 
+ + + =  

∂ ∂   
∫ ∫∑  (5) 

Typical boundary conditions at the crack surfaces are combinations of specific temperature and/or heat 

flux density, and the standard homogeneous boundary conditions can be summarized as 

(i) prescribed temperature: 
11 0| 0,        | 0

N N
N

T Tθ θ α= =
= =  (6) 

(ii) prescribed temperature and heat flux: 
1

1 0
0,      / 0

N N
N N

T T
θ θ α

θ
= =
= ∂ ∂ =  (7) 

(iii) prescribed heat flux: 
1

1 1 0
/ 0,       / 0

N N
N N

T T
θ θ α

θ θ
= =

∂ ∂ = ∂ ∂ =  (8) 

In the above denotations, the subscript " i " represents the -thi  material, and it will be omitted hereinafter 

except where it may cause confusion. 
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3.  Symplectic eigen expansion 

By introducing ln rξ = , r r
S rq= , S rqθ θ= , the variational principle, i.e., Eq.(5), can be 

transformed into the equation as follows, 

 
0 0

2 2

, , , ,

1

δ
1
( ) d d 0

2

i

N

i i

r i i r i i i

i i i

T T
S S S S

k

α

θ θ ξ θ
ξ θ

∞

=

  ∂ ∂ 
+ + + =  

∂ ∂   
∫ ∫∑  (9) 

Making the variation with respect to Sθ  gives 

 
T

S kθ
θ

∂
= −

∂
 (10) 

Substituting Sθ  back into the variational principle to eliminate Sθ  leads to 

 
0 0

2

, 2

,

1

δ ( ) d d 0
2 2

i

N

r ii i i

r i i

i i i

ST k T
S

k

α

ξ θ
ξ θ

∞

=

  ∂ ∂ 
+ − =   ∂ ∂   

∫ ∫∑  (11) 

Making the variations of Eq.(11) with respect to T and r
S  respectively, the symplectic dual equation can 

be specified as follows, 

 
2 2

/ 0 1/

/ / 0
r r

T Tk

S Sk

ξ

ξ θ

∂ ∂ −    
=    ∂ ∂ ∂ ∂    

 (12) 

In the symplectic dual method, T  is also recognized as the configuration variable while r
S  the dual 

variable. The above symplectic dual equation can also be expressed in the form of matrix as follows, 

 =Z HZ!  (13) 

where 
T

[ , ]
r

T SZ = , and the dot ‘ ⋅ ’ represents the partial differentiation with respect to ξ . By using the 

method of variable separation and assuming that the solution is in the form of 

 ( )e
µξ θ=Z ψ  (14) 

the original problem can be transformed into a symplectic eigenvalue problem, defined as follows, 
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 ( ) ( )θ µ θ=Hψ ψ  (15) 

where the eigenvalue µ  and the corresponding eigenvector 
T( ) [ , ]

T r
θ ψ ψ=ψ  form the symplectic eigen 

pair (or termed as symplectic eigen solution). Depending on the boundary conditions on the crack 

surfaces, zero eigenvalue and the corresponding eigenvector may exist and they should be determined 

by solving ( ) 0θ =Hψ . For the three sets of typical boundary conditions in Eq.(6)-(8), zero eigenvalue 

only exist for the case with prescribed heat flux on the crack surfaces, e.g. Eq.(7). And the 

corresponding eigenvector can be specified by 

 (1) T[1 0]=ψ  (16) 

It actually represents the steady temperature field with zero heat fluxes and temperature uniformly 

distributed everywhere. Besides, the Jordan form eigenvector 
(1)

1Jψ  should satisfy 
(1) (1)

1J =Hψ ψ , and 

solving this equation gives 
(1) T

1 [0 ]
J

k= −ψ . The Jordan form eigenvector forms the corresponding eigen 

solution by 

 
(1) (1) (1) T

1 [ ]
J J

kξ ξ+ = −ψ = ψ ψ  (17) 

which represents a temperature filed with a center heat generation. It can be proven that the second 

grade Jordan form eigenvector does not exist and the Jordan chain breaks here. For nonzero 

eigensolutions, solving the above symplectic characteristic equation gives the general solution of the 

eigenvector 

 
T

sin( )  cos( )
( ) [ , ]

sin( )  cos( )
T r

A

k k B

µθ µθ
θ ψ ψ

µ µθ µ µθ

   
= =    − −   

ψ  (18) 

where T
[ , ]A B=F  is the vector of undetermined coefficients. Substituting the above eigenvector into 

the compatibility conditions at the interface between the material 
i

M  and 1i
M

+ , Eq. (2) and Eq. (3) gives 
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1 1

1

/ cos( ) / sin( )

sin( ) cos( )

i i i i i i i

i i i

i i i

k k k k A

B

µα µα

µα µα
+ +

+

−   
= =    

   
F RF  (19) 

The above equation relates the coefficient vectors i
F  and 

1i+
F  explicitly. Similarly, the coefficient 

vector 
n
F  of the -thn  material can be expressed by using 1

F  explicitly, and the eigenvector of the -thn  

material can be specified by 

 
1

1

1

sin( ) cos( )

sin( ) cos( )
n i

i nn n
k k

µθ µθ

µ µθ µ µθ = −

 
=  − − 

∏ψ RF  (20) 

The solution of the original problem can be given in the form of eigen expansion after solving all the 

symplectic eigen solutions: 

 
( )( ) ( )

1

( )
j

j j

j

e
ξµγ θ

∞

=

=∑Z ψ  (21) 

where the superscript " ( )j " represents the symplectic eigen expanding order, and ( )jγ  is the -thj  eigen 

expanding coefficients. Following the definition of the generalized flux intensity factor (GFIF) by 

Ref.[32], the expanding coefficients ( )jγ ( 1,2,...j = ∞ ) are the GFIFs. Unlike the definition of stress 

intensity factors (SIFs) in linear elastic fracture mechanics (LEFM), the GFIFs include higher order 

symplectic eigen expanding coefficients beside the terms with singularity. The analytical solution can be 

obtained after solving all the unknown GFIFs. 

 

It may be noted that the symplectic eigenvalues and the vector 1
F  are still unknown in present 

symplectic solving system, and should be determined by the boundary conditions at the two crack 

surfaces. Actually, the coefficients vector 1
F  depends only on the boundary conditions on 

1
0θ = . 
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Substituting the eigenvector of the first material into the boundary condition on 
1
0θ =  leads to the 

nontrivial solution of 1
F , shown as follows, 

(a) 
1

T

1 1 0[1,0] ,   for   | 0T θ =
= =F  (22) 

(b) ( )
1

T

1 1 0[0,1] ,   for   / | 0T θθ == ∂ ∂ =F  (23) 

The symplectic eigenvalues should be determined by the boundary condition on 
N N
θ α= , by 

substituting the eigenvector into the boundary condition on 
N N
θ α= , i.e.,  

 ( ) 0µΘ =  (24) 

The value of the symplectic eigenvalues can be solved from the above equation. For some simple cases, 

the analytical solutions of the above equation can be obtained while for complex situations it can be 

solved numerically by using the Newton iteration method. 

4.  Symplectic analytical singular element (SASE) 

In this section, a singular element with radius ρ  for steady-state thermal conduction problem of multi-

material crack as shown in Fig.2 is constructed. In finite element modeling, the area around the crack tip 

should be occupied by this singular element while the other area of the structure employs conventional 

finite elements. The developed singular element is connected with the surrounding conventional 

elements through the "export nodes" which are distributed on the element's circumference as shown in 

Fig.2. The node indexes are arranged from 1 to P  ( P N≥  in practical usage) as illustrated in Fig.2, and 

the number of nodes is not limited to a specific value; more export nodes will benefit the solving 

accuracy but will also increase the implementation complexity. The interior fields of the developed 

element are described by using the above obtained analytical symplectic eigen solutions; for this reason 

it is termed as “symplectic analytical singular element (SASE)”.  

Choosing the first P  terms from Eq.(21) as trial functions: 
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( )* ( ) ( )

1

jP j j

Tj
T e

ξµγ ψ
=

=∑ , 
( )* ( ) ( )

1

jP j j

r rj
S e

ξµγ ψ
=

=∑  (25) 

The superscript " * " represents trial function to differentiate from the full symplectic eigen expansion, 

i.e., Eq.(21). However, other expanding terms are ignored which will cause errors in the results. In fact, 

the errors can be minimized when sufficient numbers of expanding terms are selected. Rewriting the 

trial functions in form of matrix results in: 

 
* T

T
T = f Aγ ,      

* T

r r
S = f Aγ  (26) 

where (1) (2) ( ) T[ , ,... ]Pγ γ γ=γ  is the vector of unknown GFIFs (eigen expanding coefficients) and 

 
(1) (2) (3)

diag( , , ...)e e e
ξµ ξµ ξµ=A  (27) 

 
(1) (2) ( ) T[ , ,... ]P

T T T T
ψ ψ ψ=f , 

(1) (2) ( ) T[ , ,... ]P
r r r r

ψ ψ ψ=f  (28) 

Substituting the -thi  export node's coordinates ( , )
i

ρ θ  into the above expressions, the nodal temperature 

can be obtained easily, and the nodal temperature vector 
T

1 2
[ , ,... ]

P
T T T=t  can be specified by 

 t = LBγ  (29) 

where 
(1) (2) (3)

diag( , , ...)µ µ µρ ρ ρ=B  and L  is the transform matrix specified by 

 

(1) (2) ( )

1 1 1

(1) (2) ( )

2 2 2

(1) (2) ( )

( ), ( ),... ( )

( ), ( ),... ( )

...

( ), ( ),... ( )

P

T T T

P

T T T

P

T N T N T N

ψ θ ψ θ ψ θ

ψ θ ψ θ ψ θ

ψ θ ψ θ ψ θ

 
 
 =
 
 
  

L  (30) 

Meanwhile, the relationship between the unknown GFIFs (eigen expanding coefficients) and nodal 

temperature can be obtained and presented as follows, 

 1 1− −
= B L tγ  (31) 

Hence, the interior fields can be expressed by using the nodal temperature as follows, 

 
* T 1 1

T
T

− −
= f AB L t , 

* T 1 1

r r
S

− −
= f AB L t  (32) 
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The above formulas can be generally recognized as the “shape functions” in the frame of FEM although 

they are not standard polynomial FEM shape functions. Substituting the above equations into the 

variational principle represented by Eq.(11), and considering the trial functions satisfy the requirements 

of fundamental equations in the discussed domain and homogeneous boundary conditions on the crack 

surfaces, the variational principle can be simplified as follows, 

 { }* *

0

( )

1 ln
δ d 0

i i

r

CN

i
T S

α

ξ ρ
θ

= =
  = ∫∑  (33) 

In addition, the stiffness matrix can be derived from the above variational principle: 

 ( )
( )

T T 1

1 0
d

i i
CN

T ri

α

θ− −

=∑ ∫K = L f f L  (34) 

It should be noted that the integration domain for each material is from 0  to i
α  in the sub polar 

coordinate system 
i i

OCθ .  

5.  Integration and GFIFs 

According to Eq. (34), it is interesting to find that the integration for the proposed 2D circular element is 

performed over its circumference (which is a 1D domain). Furthermore, since all the components in 
T
f  

and 
r
f  are explicitly available, the integration can be achieved analytically.  

By assembling the stiffness matrices of the SASE and standard elements into the global stiffness 

matrix, the original problem can be solved numerically. After solving the global equation, the nodal 

temperature of the SASE can be obtained, and the GFIFs can be calculated directly according to Eq.(31). 

The solving procedure is illustrated in Fig.3 for the convenience of readers. Unlike other methods, the 

complex post-processing is unnecessary in the proposed method. However, for crack propagation 

problem the proposed method still requires remeshing which is not required in the XFEM. Another 
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possible drawback of the present method is that it is hard to extend the present method for three-

dimensional problems because it is very complex to get the corresponding eigen solutions. 

6.  Singularity order (eigenvalues) 

In this section, a simple bimaterial crack is first analyzed followed by the analytical solution of 

eigenvalues and eigenvectors demonstrating the proposed method. Moreover, a special problem 

containing a five-material crack is investigated and the characteristic equation of eigenvalue is derived 

explicitly. It is interesting to find that a singularity invariant is proven to exist for a special case. 

Furthermore, other complex cases with similar multi-material structures are studied in which singularity 

invariants are also found existing. 

Bimaterial crack: Considering a bimaterial interface crack problem, the boundary condition on crack 

surfaces can be presented as follows, 

 
1 20

0,  / 0T T
θ θ π

θ
= =
= ∂ ∂ =  (35) 

The eigenvalue satisfies 1 2tan( ) /k kπµ = ±  and can be solved analytically which is shown as follows, 

 1

1

1
= sin( )

k
µθ

µ

 
 − 

ψ  (36) 

 ( )2

2 2 1

1/
= sin( )cos( ) cos( )sin( )

k
k kµπ µθ µπ µθ

µ

 
+ − 

ψ  (37) 

 ,1 1 cos( )S kθ µ µθ= − , ,2 2 1sin( )sin( ) cos( )cos( )S k kθ µ µθ µθ µ µπ µθ= −  (38) 

Specially, when 
1 2
k k=  the present solution is the same as that in Ref.[49]. This also verifies the 

proposed model.  
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Singularity invariants: A special five-material crack is considered as shown in Fig.4, in which  

2 3 4
/ 2α α α π= = = , 

1
/ 2pα π= , 0 1p< < . The parameter p  is introduced to indicate the crack 

orientation. The material properties satisfy 
1 2 3 4 5
/ / / /k k k k k =1/ /1/ /1k k . The boundary conditions on 

the crack surfaces are applied as follows: 

 
1 5 50

/ 0,  / 0T T
θ θ α

θ θ
= =

∂ ∂ = ∂ ∂ =  (39) 

The characteristic equation of nonzero eigenvalue can be obtained and specified by 

 [ ]
2

2 2

2

( 1)
( 1) cos( ) ( 1) sin( ) 1 cos( ) cos( )sin( ) sin( ) 0

1

k
k k p p

k
µπ µπ µπ µπ µπ µπ

 +
 + − − − + + =   − 

 (40) 

The above equation is composed of two parts, the eigenvalues of each part can be solved separately. The 

eigenvalue of the first part is independent on p  (i.e. crack orientation in the specific material), and 

hence it is termed as singularity invariant which is given by 

 2 2arccos(( 1) / ( 1) ),     0< 1k kµπ µ= − + <  (41) 

In addition, the singularity invariant remains unchanged when replacing k  by 1/ k . This implies that the 

singularity invariant always exist for arbitrary crack orientation in any material in Fig.4. The singularity 

invariant against crack orientation curve is shown in Fig.5. In this figure, only the 1k >  part is shown 

because the solution remains unchanged when replacing k  by 1/ k . The second part of Eq.(40) could 

still bring singularities which is dependent on the crack orientation, it is not listed here for the sake of 

simplicity. 

Furthermore, the singularity invariants which are independent on crack orientation can also be 

found in similar structures shown in Fig.6. However, explicit forms of the eigenvalues of these complex 

structures can hardly be derived, whilst they should be solved numerically. It is found that two sets of 

singularity invariants exist in each case when 2k = . The numerical results of singularity invariants are 

listed in 
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Tab.1. 

 

7. Modeling of multi-material cracks using the SASE 

In this section, the steady-state thermal conduction problem in cracked structures is studied using the 

proposed SASE. The present solutions of GFIFs are compared with existing results and good 

agreements are found. Convergence studies on the number of the export nodes of the proposed SASE 

are conducted. After the verification, some complex structures are investigated to demonstrate the 

proposed method. 

 

Cracked disc: A unit disc is considered and the meshed disc is shown in Fig.7, In the FE mesh, the 

crack tip area is occupied by the developed SASE with radius 0.5ρ =  while the other area is meshed by 

using conventional isoparametric bilinear elements. The boundary conditions on the lower crack surface 

1
Γ  and upper surface 

2
Γ  are specified by: 

 1 2
/ 0,   on  ,    0,  on  T Tθ∂ ∂ = Γ = Γ  (42) 

The boundary condition on the circular portion 
R

Γ  of the boundary of the disc is specified by 

 / ,     on  
R

T r y∂ ∂ = Γ  (43) 

The symplectic eigenvalues can be solved analytically and specified by (2 1) / 4, 1,2,3,...n nµ = − = . The 

approximate solution for this problem can be found in Ref.[32] 

1/4 3/4 5/4 7/4( , ) 1.35812 sin( / 4) 0.970087 sin(3 / 4) 0.452707 sin(5 / 4) ( )T r r r r O rθ θ θ θ= − + − +  (44) 

The present results together with the results from Ref. [32] and Ref. [51] are listed in Tab.2, in which the 

convergence study on the number of export nodes of the proposed SASE is provided. Considering the 

results from Ref. [32] as benchmark, it is shown that when 17 export nodes are used the relative errors 
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are less then 2.0%. But when the number of export nodes increases to 31, the relative errors are 

negligible. The contours of heat flux densities are shown in Fig.8, in which the heat fluxes distribution 

are very clear and strong concentrations in the vicinity of crack tip can easily be observed. 

In addition to the single material cracked disc shown in Fig.7, a disc composed of four materials as 

illustrated in Fig.9 is considered. The boundary conditions are kept the same as the previous case. The 

thermal conductivities for each material are 
1 2 3 4
/ / / 1/ 2 / 3 / 4k k k k = . The eigenvalues should be solved 

numerically and the first few numerical results are listed in Tab.3. 

The results of GFIFs are listed in Tab.4. It is found that with the increase of the selected export 

nodes the present solutions trend to converge, and the solutions are stable when 31 export nodes are 

selected. The contours of heat flux densities are shown Fig.10. Again, the gradients of the heat flux 

densities are very clear. It is interesting to find that qθ  is continuing over the domain but r
q  is not, and 

the material interfaces are the dividing lines of the distribution of r
q . Actually this is in line with the 

compatibility condition on the material interfaces. According to the present numerical examination, it is 

found that 31 export nodes can ensure the solving accuracy; so in the following discussions 31 export 

nodes of the SASE are used. 

 

Double edge crack: A bimaterial W W×  rectangular plate containing cracks on two sides is employed 

to demonstrate the application of the developed method. The geometry and mesh of the plate are shown 

in Fig.11. The length of the cracks is a  and / 1/10a W = . The temperature on the upper surfaces of the 

cracks is zero while the lower surfaces of the cracks are insulated. Moreover, the left and right sides of 

the plate are also insulated. The temperatures on the lower and upper sides of the plate are 1
T  and 2

T , 

respectively. The sketch of finite element mesh is shown in Fig.11, only half of the specimen is actually 

calculated due to geometrical symmetry. The crack tip area is occupied by the SASE with radius 
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0.5aρ =  while the other area is meshed using conventional isoparametric bilinear elements. The 

eigenvalue for this case can be solved analytically and specified by 1 2arctan( / )k kµπ = ± . In this 

example 
o

1
100 CT =  is chosen and the numerical results of GFIFs with the variation of 2

T  are listed in 

Tab.5. It is observed that the values of 1
γ , 2

γ  and 4
γ  increase monotonically with 2

T , while the values 

of 3
γ  and 5

γ  decrease with 2
T . 

 

Four-material edge crack: A 2W W×  rectangular plate made of four different materials and containing 

an edge crack is shown in Fig.12. The temperature on the upper surface of the crack is zero while the 

lower surface of the crack is insulated. The left and right sides of the plate are also insulated. The 

temperatures on the lower and upper sides of the plate are 1
T  and 2

T , respectively. The sketch of finite 

element mesh is also shown in Fig.12. The thermal conductivities are 
1 2 3 4
/ / / 1/ 2 / 3 / 4k k k k =   and the 

numerical results of eigenvalues can be found in Tab.3. The crack tip area is occupied by the SASE 

while the other area is meshed using conventional isoparametric bilinear elements. In this example 

o

1
100 CT =  is chosen and the numerical results of GFIFs with the variation of 2

T  are listed in Tab.6. It 

is observed that the values of 1
γ , 2

γ  and 4
γ  increase monotonically with 2

T , while the values of 3
γ  and 

5
γ  decrease with 2

T . 

8. Conclusion 

In this study, the steady-state thermal conduction problem with singularities of multi-material 

composites is investigated systematically. A unified procedure based on symplectic dual approach is 

proposed both for the analytical heat flux singularity study and the numerical finite element modeling 

study of the problem. The general form of the eigen expansion for multi-material crack are first derived 
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in this study. In addition, a symplectic analytical singular element (SASE) is proposed and numerical 

solutions of generalized flux intensity factors (GFIFs) can be solved. Mesh refinement around crack tips 

are not necessary and the solving efficiency is therefore improved. For the multi-material cracks with 

special configurations and material combinations, an interesting singularity invariant which is 

independent on crack orientation is proven to exist. Numerical studies on some typical cracked multi-

material structures are given to demonstrate the application of the proposed SASE. Convergence studies 

have shown that in the proposed SASE 31 nodes are required to ensure the solving accuracy. The 

developed method can be further extended for thermal conduction problem in anisotropic materials in 

which research is being carried out.  
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Fig.1 Multi-material crack and the sub-coordinate system 

 

 

 

Fig.2 Configuration of the symplectic analytical singular element(SASE) for multi-material crack 
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Fig.3 Solving procedure of the SASE based FE modelling 

 

 

 

Fig.4 A special five material crack 
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Fig.5 The curve of the heat flux singularity invariant 

 

     

 (a) 7 material (b) 9 material (c) 11 material (d) 13 material 

Fig.6 Multi-material crack with similar structures 

 

 

Fig.7 A cracked disc and the FE mesh with the symplectic analytical singular element(SASE) 
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 (a) qθ  (b) r
q  

Fig.8 Contours of heat flux densities around the tip of the crack shown in Fig.7.  

 

  

Fig.9 Configuration of a four material disc containing a crack 
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 (a) qθ  (b) r
q  

Fig.10 Contours of heat flux densities around the four-material crack tip.  

 

 

Fig.11 A double edge crack in a bimaterial rectangular plate and the FE mesh 
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Fig.12 A four material edge crack in a rectangular plate and the FE mesh 
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Tab.1 Singularity invariants of the multi-material crack 

 7 material 9 material 11 material 13 material 

1invariantµ  0.468758 0.469982 0.470512 0.470792 

2invariantµ  0.912260 0.929118 0.934820 0.937516 

 

Tab.2 Generalized flux intensity factors(GFIFs) of the cracked single material disc 

Export Node Num. 
1
γ  Err% 

2
γ  Err% 

3
γ  Err% 

13 -1.3361763 -1.61574 0.93698025 -3.41276 -0.42601371 -5.89637 

17 -1.3456556 -0.91777 0.95223888 -1.83985 -0.44502567 -1.69676 

31 -1.3581286 0.00063 0.97008793 0.00009 -0.45270759 0.00013 

Ref.[51] -1.35813 --- 0.970087 --- -0.452707 --- 

Ref.[32] -1.35812 --- 0.970087 --- -0.452707 --- 

 

Tab.3 Numerical solutions of the first few symplectic eigenvalues the four material crack 

1n =  2 3 4 5 6 7 

0.18044 0.70620 1.17943 1.82057 2.29380 2.81956 3.18044 

 

Tab.4 Generalized flux intensity factors(GFIFs) of the cracked four-material disc 

Export Node Num. 
1
γ  

2
γ  

3
γ  

13 -1.09597148 0.51025814 -0.18213196 

17 -1.10293654 0.51993674 -0.19368712 

25 -1.19465521 0.52471515 -0.19978455 

31 -1.19368712 0.52227187 -0.19789354 

 

Tab.5 Generalized flux intensity factors(GFIFs) of the double edge cracked bimaterial plate 
o

2 ( C)T  
1
γ  

2
γ  

3
γ  

4
γ  

5
γ  

0 15.514225  8.751910  2.488849  0.097302  -0.027103  

120 81.575285  9.039843  -0.753853  1.156677  -0.273296  

240 147.636345  9.327776  -3.996555  2.216053  -0.519490  

360 213.697405  9.615709  -7.239258  3.275428  -0.765683  

 

Tab.6 Generalized flux intensity factors(GFIFs) of the four material edge crack 
o

2 ( C)T  1
γ  2

γ  3
γ  4

γ  5
γ  

0 33.887201  14.951955  2.306122  0.098628  -0.047287  

40 66.403534  14.595335  1.082054  0.474483  -0.165561  

80 98.919866  14.238715  -0.142014  0.850339  -0.283834  

120 131.436199  13.882095  -1.366082  1.226194  -0.402108  

160 163.952531  13.525475  -2.590150  1.602050  -0.520382  

200 196.468864  13.168855  -3.814218  1.977906  -0.638655  

 


