49 research outputs found

    MEM-BRAIN gas separation membranes for zero-emission fossil power plants

    Get PDF
    The aim of the MEM-BRAIN project is the development and integration of gas separation membranes for zero-emission fossil power plants. This will be achieved by selective membranes with high permeability for CO2, O2 or H2, so that high-purity CO2 is obtained in a readily condensable form. The project is being implemented by the “MEM-BRAIN” Helmholtz Alliance consisting of research centres, universities and industrial partners.\ud \ud The MEM-BRAIN project focuses on the development, process engineering, system integration and energy systems analysis of different gas separation membranes for the different CO2 capture process routes in fossil power plants

    Lanthanum tungstate membranes for H-2 extraction and CO2 utilization: Fabrication strategies based on sequential tape casting and plasma-spray physical vapor deposition

    Get PDF
    [EN] In the context of energy conversion efficiency and decreasing greenhouse gas emissions from power generation and energy-intensive industries, membrane technologies for H-2 extraction and CO2 capture and utilization become pronouncedly important. Mixed protonic-electronic conducting ceramic membranes are hence attractive for the pre-combustion integrated gasification combined cycle, specifically in the water gas shift and H-2 separation process, and also for designing catalytic membrane reactors. This work presents the fabrication, microstructure and functional properties of Lanthanum tungstates (La28-xW4+xO54+delta, LaWO) asymmetric membranes supported on porous ceramic and porous metallic substrates fabricated by means of the sequential tape casting route and plasma spray-physical vapor deposition (PS-PVD). Pure LaWO and W site substituted LaWO were employed as membrane materials due to the promising combination of properties: appreciable mixed protonic-electronic conductivity at intermediate temperatures and reducing atmospheres, good sinterability and noticeable chemical stability under harsh operating conditions. As substrate materials porous LaWO (non-substituted), MgO and Crofer22APU stainless steel were used to support various LaWO membrane layers. The effect of fabrication parameters and material combinations on the assemblies' microstructure, LaWO phase formation and gas tightness of the functional layers was explored along with the related fabrication challenges for shaping LaWO layers with sufficient quality for further practical application. The two different fabrication strategies used in the present work allow for preparing all-ceramic and ceramic-metallic assemblies with LaWO membrane layers with thicknesses between 25 and 60 mu m and H-2 flux of ca. 0.4 ml/min cm(2) measured at 825 degrees C in 50 vol% H-2 in He dry feed and humid Ar sweep configuration. Such a performance is an exceptional achievement for the LaWO based H-2 separation membranes and it is well comparable with the H-2 flux reported for other newly developed dual phase cer-cer and cer-met membranes.ProtOMem Project under the BMBF grant 03SF0537 is gratefully acknowledged. Furthermore, the authors thank Ralf Laufs for his assistance in operating the PS-PVD facility. Dr. A. Schwedt from the Central Facility for Electron Microscopy (Gemeinschaftslabor fur Elektronenmikroskopie GFE), RWTH Aachen University is acknowledged for performing the EBSD analysis on the PS-PVD samples.Ivanova, ME.; Deibert, W.; Marcano, D.; Escolástico Rozalén, S.; Mauer, G.; Meulenberg, WA.; Bram, M.... (2019). Lanthanum tungstate membranes for H-2 extraction and CO2 utilization: Fabrication strategies based on sequential tape casting and plasma-spray physical vapor deposition. Separation and Purification Technology. 219:100-112. https://doi.org/10.1016/j.seppur.2019.03.015S100112219A.A. Evers, The hydrogen society, More than just a vision? ISBN 978-3-937863-31-3, Hydrogeit Verlag, 16727 Oberkraemer, Germany, 2010.Deibert, W., Ivanova, M. E., Baumann, S., Guillon, O., & Meulenberg, W. A. (2017). Ion-conducting ceramic membrane reactors for high-temperature applications. Journal of Membrane Science, 543, 79-97. doi:10.1016/j.memsci.2017.08.016Arun C. Bose, Inorganic membranes for energy and environmental applications, Edt. A. C. Bose, ISBN: 978-0-387-34524-6, Springer Science+Business Media, LLC, 2009.M. Marrony, H. Matsumoto, N. Fukatsu, M. Stoukides, Typical applications of proton ceramic cells: a way to market? in: M. Marrony (ed.), Proton-conducting ceramics. From fundamentals to applied research, by Pan Stanford Publishing Pte. Ltd., ISBN 978-981-4613-84-2, 2016.Di Giorgio, P., & Desideri, U. (2016). Potential of Reversible Solid Oxide Cells as Electricity Storage System. Energies, 9(8), 662. doi:10.3390/en9080662A.L. Dicks, D.A.J. Rand, Fuel cell systems explained, ISBN: 9781118613528, John Wiley & Sons Ltd., 2018.Zheng, Y., Wang, J., Yu, B., Zhang, W., Chen, J., Qiao, J., & Zhang, J. (2017). A review of high temperature co-electrolysis of H2O and CO2to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chemical Society Reviews, 46(5), 1427-1463. doi:10.1039/c6cs00403bGötz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., … Kolb, T. (2016). Renewable Power-to-Gas: A technological and economic review. Renewable Energy, 85, 1371-1390. doi:10.1016/j.renene.2015.07.066Woodhead publishing series in energy, Nr. 76, Membrane reactors for energy applications and basic chemical production, Edt. A. Basile, L. Di Paola, F.I. Hai, V. Piemonte, by Elsevier Ltd, ISBN 978-1-78242-223-5, 2015.Morejudo, S. H., Zanón, R., Escolástico, S., Yuste-Tirados, I., Malerød-Fjeld, H., Vestre, P. K., … Kjølseth, C. (2016). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 353(6299), 563-566. doi:10.1126/science.aag0274Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I., Zanón, R., Catalán-Martinez, D., Beeaff, D., … Kjølseth, C. (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy, 2(12), 923-931. doi:10.1038/s41560-017-0029-4J. Franz, Energetic and economic analysis of CO2 retention in coal gasification power plants by means of polymer and ceramic membranes (dissertation, German), Ruhr-University Bochum, Germany, Shaker Verlag, 2013.Franz, J., & Scherer, V. (2011). Impact of ceramic membranes for CO2 separation on IGCC power plant performance. Energy Procedia, 4, 645-652. doi:10.1016/j.egypro.2011.01.100E. Forster, dissertation, Thermal stability of ceramic membranes and catalysts for H2-separation in CO-shift reactors, Energy and Environment Band, vol. 284, ISBN 978-3-95806-084-5, RUB 2015.Escolástico, S., Stournari, V., Malzbender, J., Haas-Santo, K., Dittmeyer, R., & Serra, J. M. (2018). Chemical stability in H2S and creep characterization of the mixed protonic conductor Nd5.5WO11.25-δ. International Journal of Hydrogen Energy, 43(17), 8342-8354. doi:10.1016/j.ijhydene.2018.03.060Mortalò, C., Rebollo, E., Escolástico, S., Deambrosis, S., Haas-Santo, K., Rancan, M., … Fabrizio, M. (2018). Enhanced sulfur tolerance of BaCe0.65Zr0.20Y0.15O3-δ-Ce0.85Gd0.15O2-δ composite for hydrogen separation membranes. Journal of Membrane Science, 564, 123-132. doi:10.1016/j.memsci.2018.07.015Matsumoto, H., Shimura, T., Higuchi, T., Tanaka, H., Katahira, K., Otake, T., … Mizusaki, J. (2005). Protonic-Electronic Mixed Conduction and Hydrogen Permeation in BaCe[sub 0.9−x]Y[sub 0.1]Ru[sub x]O[sub 3−α]. Journal of The Electrochemical Society, 152(3), A488. doi:10.1149/1.1852442Cai, M., Liu, S., Efimov, K., Caro, J., Feldhoff, A., & Wang, H. (2009). Preparation and hydrogen permeation of BaCe0.95Nd0.05O3−δ membranes. Journal of Membrane Science, 343(1-2), 90-96. doi:10.1016/j.memsci.2009.07.011U. Balachandran, J. Guan, S.E. Dorris, A.C. Bose, G.J. Stiegel, in: Proceedings of the 5th ICIM, A-410, Nagoya, Japan, 1998.Qi, X. (2000). Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes. Solid State Ionics, 130(1-2), 149-156. doi:10.1016/s0167-2738(00)00281-2Zhan, S., Zhu, X., Ji, B., Wang, W., Zhang, X., Wang, J., … Lin, L. (2009). Preparation and hydrogen permeation of SrCe0.95Y0.05O3−δ asymmetrical membranes. Journal of Membrane Science, 340(1-2), 241-248. doi:10.1016/j.memsci.2009.05.037Song, S. (2004). Hydrogen permeability of SrCe1−xMxO3−δ (x=0.05, M=Eu, Sm). Solid State Ionics, 167(1-2), 99-105. doi:10.1016/j.ssi.2003.12.010Wei, X., Kniep, J., & Lin, Y. S. (2009). Hydrogen permeation through terbium doped strontium cerate membranes enabled by presence of reducing gas in the downstream. Journal of Membrane Science, 345(1-2), 201-206. doi:10.1016/j.memsci.2009.08.041CHENG, S., GUPTA, V., & LIN, J. (2005). Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes. Solid State Ionics, 176(35-36), 2653-2662. doi:10.1016/j.ssi.2005.07.005Kniep, J., & Lin, Y. S. (2010). Effect of Zirconium Doping on Hydrogen Permeation through Strontium Cerate Membranes. Industrial & Engineering Chemistry Research, 49(6), 2768-2774. doi:10.1021/ie9015182LIANG, J., MAO, L., LI, L., & YUAN, W. (2010). Protonic and Electronic Conductivities and Hydrogen Permeation of SrCe0.95-xZrxTm0.05O3-δ(0≤x≤0.40) Membrane. Chinese Journal of Chemical Engineering, 18(3), 506-510. doi:10.1016/s1004-9541(10)60250-9Xing, W., Inge Dahl, P., Valland Roaas, L., Fontaine, M.-L., Larring, Y., Henriksen, P. P., & Bredesen, R. (2015). Hydrogen permeability of SrCe0.7Zr0.25Ln0.05O3− membranes (Ln=Tm and Yb). Journal of Membrane Science, 473, 327-332. doi:10.1016/j.memsci.2014.09.027Oh, T., Yoon, H., Li, J., & Wachsman, E. D. (2009). Hydrogen permeation through thin supported SrZr0.2Ce0.8−xEuxO3−δ membranes. Journal of Membrane Science, 345(1-2), 1-4. doi:10.1016/j.memsci.2009.08.031Hamakawa, S. (2002). Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3−α thin films. Solid State Ionics, 148(1-2), 71-81. doi:10.1016/s0167-2738(02)00047-4Escolástico, S., Ivanova, M., Solís, C., Roitsch, S., Meulenberg, W. A., & Serra, J. M. (2012). Improvement of transport properties and hydrogen permeation of chemically-stable proton-conducting oxides based on the system BaZr1-x-yYxMyO3-δ. RSC Advances, 2(11), 4932. doi:10.1039/c2ra20214jH. Matsumoto, T. Shimura, T. Higuchi, T. Otake, Y. Sasaki, K. Yashiro, A. Kaimai, T. Kawada, J. Mizusaki, Mixed protonic-electronic conduction properties of SrZr0.9−xY0.1RuxO3−δ, Electrochemistry, 72(12), 861–864.M.E. Ivanova, S. Escolático, M. Balaguer, J. Palisaitis, Y.J. Sohn, W.A. Meulenberg, O. Guillon, J. Mayer, J.M. Serra, Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3−δ:Ce0.8Y0.2O2−δ at intermediate temperatures, Sci. Rep. 6 (2016) 34773–34787.S. Elangovan, B.G. Nair, T.A. Small, Ceramic mixed protonic-electronic conducting membranes for hydrogen separation (2007), US 7,258,820 B2, 1997.Rosensteel, W. A., Ricote, S., & Sullivan, N. P. (2016). Hydrogen permeation through dense BaCe 0.8 Y 0.2 O 3−δ – Ce 0.8 Y 0.2 O 2−δ composite-ceramic hydrogen separation membranes. International Journal of Hydrogen Energy, 41(4), 2598-2606. doi:10.1016/j.ijhydene.2015.11.053Rebollo, E., Mortalò, C., Escolástico, S., Boldrini, S., Barison, S., Serra, J. M., & Fabrizio, M. (2015). Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3−δ and Y- or Gd-doped ceria. Energy & Environmental Science, 8(12), 3675-3686. doi:10.1039/c5ee01793aMontaleone, D., Mercadelli, E., Escolástico, S., Gondolini, A., Serra, J. M., & Sanson, A. (2018). All-ceramic asymmetric membranes with superior hydrogen permeation. Journal of Materials Chemistry A, 6(32), 15718-15727. doi:10.1039/c8ta04764bKim, H., Kim, B., Lee, J., Ahn, K., Kim, H.-R., Yoon, K. J., … Lee, J.-H. (2014). Microstructural adjustment of Ni–BaCe0.9Y0.1O3−δ cermet membrane for improved hydrogen permeation. Ceramics International, 40(3), 4117-4126. doi:10.1016/j.ceramint.2013.08.066(Balu) Balachandran, U., Lee, T. H., Park, C. Y., Emerson, J. E., Picciolo, J. J., & Dorris, S. E. (2014). Dense cermet membranes for hydrogen separation. Separation and Purification Technology, 121, 54-59. doi:10.1016/j.seppur.2013.10.001Shimura, T. (2001). Proton conduction in non-perovskite-type oxides at elevated temperatures. Solid State Ionics, 143(1), 117-123. doi:10.1016/s0167-2738(01)00839-6HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004Haugsrud, R., & Kjølseth, C. (2008). Effects of protons and acceptor substitution on the electrical conductivity of La6WO12. Journal of Physics and Chemistry of Solids, 69(7), 1758-1765. doi:10.1016/j.jpcs.2008.01.002Magrasó, A., Polfus, J. M., Frontera, C., Canales-Vázquez, J., Kalland, L.-E., Hervoches, C. H., … Haugsrud, R. (2012). Complete structural model for lanthanum tungstate: a chemically stable high temperature proton conductor by means of intrinsic defects. J. Mater. Chem., 22(5), 1762-1764. doi:10.1039/c2jm14981hSeeger, J., Ivanova, M. E., Meulenberg, W. A., Sebold, D., Stöver, D., Scherb, T., … Serra, J. M. (2013). Synthesis and Characterization of Nonsubstituted and Substituted Proton-Conducting La6–xWO12–y. Inorganic Chemistry, 52(18), 10375-10386. doi:10.1021/ic401104mScherb, T., Kimber, S. A. J., Stephan, C., Henry, P. F., Schumacher, G., Escolástico, S., … Banhart, J. (2016). Nanoscale order in the frustrated mixed conductor La5.6WO12−δ. Journal of Applied Crystallography, 49(3), 997-1008. doi:10.1107/s1600576716006415Van Holt, D., Forster, E., Ivanova, M. E., Meulenberg, W. A., Müller, M., Baumann, S., & Vaßen, R. (2014). Ceramic materials for H2 transport membranes applicable for gas separation under coal-gasification-related conditions. Journal of the European Ceramic Society, 34(10), 2381-2389. doi:10.1016/j.jeurceramsoc.2014.03.001Forster, E., van Holt, D., Ivanova, M. E., Baumann, S., Meulenberg, W. A., & Müller, M. (2016). Stability of ceramic materials for H2 transport membranes in gasification environment under the influence of gas contaminants. Journal of the European Ceramic Society, 36(14), 3457-3464. doi:10.1016/j.jeurceramsoc.2016.05.021Medvedev, D., Lyagaeva, J., Plaksin, S., Demin, A., & Tsiakaras, P. (2015). Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. Journal of Power Sources, 273, 716-723. doi:10.1016/j.jpowsour.2014.09.116Yang, L., Wang, S., Blinn, K., Liu, M., Liu, Z., Cheng, Z., & Liu, M. (2009). Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr 0.1 Ce 0.7 Y 0.2– x Yb x O 3–δ. Science, 326(5949), 126-129. doi:10.1126/science.1174811Duan, C., Kee, R. J., Zhu, H., Karakaya, C., Chen, Y., Ricote, S., … O’Hayre, R. (2018). Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature, 557(7704), 217-222. doi:10.1038/s41586-018-0082-6Kreuer, K. D. (2003). Proton-Conducting Oxides. Annual Review of Materials Research, 33(1), 333-359. doi:10.1146/annurev.matsci.33.022802.091825Fantin, A., Scherb, T., Seeger, J., Schumacher, G., Gerhards, U., Ivanova, M. E., … Banhart, J. (2016). Crystal structure of Re-substituted lanthanum tungstate La5.4W1−y Re y O12–δ (0 ≤ y ≤ 0.2) studied by neutron diffraction. Journal of Applied Crystallography, 49(5), 1544-1560. doi:10.1107/s1600576716011523Fantin, A., Scherb, T., Seeger, J., Schumacher, G., Gerhards, U., Ivanova, M. E., … Banhart, J. (2017). Relation between composition and vacant oxygen sites in the mixed ionic-electronic conductors La5.4W1−MO12− (M= Mo, Re; 0 ≤y≤ 0.2) and their mother compound La6−WO12− (0.4 ≤x≤ 0.8). Solid State Ionics, 306, 104-111. doi:10.1016/j.ssi.2017.04.005J.M. Serra, S. Escolástico, M.E. Ivanova, W.A. Meulenberg, H.-P. Buchkremer, D. Stöver, US2013-0216938-A1, 2013.Escolastico, S., Seeger, J., Roitsch, S., Ivanova, M., Meulenberg, W. A., & Serra, J. M. (2013). Enhanced H2Separation through Mixed Proton-Electron Conducting Membranes Based on La5.5W0.8M0.2O11.25−δ. ChemSusChem, 6(8), 1523-1532. doi:10.1002/cssc.201300091Gil, V., Gurauskis, J., Kjølseth, C., Wiik, K., & Einarsrud, M.-A. (2013). Hydrogen permeation in asymmetric La28 − xW4 + xO54 + 3x/2 membranes. International Journal of Hydrogen Energy, 38(7), 3087-3091. doi:10.1016/j.ijhydene.2012.12.105Palmqvist, L., Lindqvist, K., & Shaw, C. (2007). Porous Multilayer PZT Materials Made by Aqueous Tape Casting. Key Engineering Materials, 333, 215-218. doi:10.4028/www.scientific.net/kem.333.215Menzler, N. H., Malzbender, J., Schoderböck, P., Kauert, R., & Buchkremer, H. P. (2013). Sequential Tape Casting of Anode-Supported Solid Oxide Fuel Cells. Fuel Cells, 14(1), 96-106. doi:10.1002/fuce.201300153Schulze-Küppers, F., Baumann, S., Tietz, F., Bouwmeester, H. J. M., & Meulenberg, W. A. (2014). Towards the fabrication of La0.98−xSrxCo0.2Fe0.8O3−δ perovskite-type oxygen transport membranes. Journal of the European Ceramic Society, 34(15), 3741-3748. doi:10.1016/j.jeurceramsoc.2014.06.012Weirich, M., Gurauskis, J., Gil, V., Wiik, K., & Einarsrud, M.-A. (2012). Preparation of lanthanum tungstate membranes by tape casting technique. International Journal of Hydrogen Energy, 37(9), 8056-8061. doi:10.1016/j.ijhydene.2011.09.083Deibert, W., Schulze-Küppers, F., Forster, E., Ivanova, M. E., Müller, M., & Meulenberg, W. A. (2017). Stability and sintering of MgO as a substrate material for Lanthanum Tungstate membranes. Journal of the European Ceramic Society, 37(2), 671-677. doi:10.1016/j.jeurceramsoc.2016.09.033Escolástico, S., Vert, V. B., & Serra, J. M. (2009). Preparation and Characterization of Nanocrystalline Mixed Proton−Electronic Conducting Materials Based on the System Ln6WO12. Chemistry of Materials, 21(14), 3079-3089. doi:10.1021/cm900067kGil, V., Strøm, R. A., Groven, L. J., & Einarsrud, M.-A. (2012). La28−xW4+xO54+3x/2Powders Prepared by Spray Pyrolysis. Journal of the American Ceramic Society, 95(11), 3403-3407. doi:10.1111/j.1551-2916.2012.05377.xIvanova, M. E., Meulenberg, W. A., Palisaitis, J., Sebold, D., Solís, C., Ziegner, M., … Guillon, O. (2015). Functional properties of La0.99X0.01Nb0.99Al0.01O4−δ and La0.99X0.01Nb0.99Ti0.01O4−δ proton conductors where X is an alkaline earth cation. Journal of the European Ceramic Society, 35(4), 1239-1253. doi:10.1016/j.jeurceramsoc.2014.11.009Dittmeyer, R., Boeltken, T., Piermartini, P., Selinsek, M., Loewert, M., Dallmann, F., … Pfeifer, P. (2017). Micro and micro membrane reactors for advanced applications in chemical energy conversion. Current Opinion in Chemical Engineering, 17, 108-125. doi:10.1016/j.coche.2017.08.001Mauer, G., Vaßen, R., & Stöver, D. (2009). Thin and Dense Ceramic Coatings by Plasma Spraying at Very Low Pressure. Journal of Thermal Spray Technology, 19(1-2), 495-501. doi:10.1007/s11666-009-9416-0Bakan, E., & Vaßen, R. (2017). Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties. Journal of Thermal Spray Technology, 26(6), 992-1010. doi:10.1007/s11666-017-0597-7Jarligo, M. O., Mauer, G., Bram, M., Baumann, S., & Vaßen, R. (2013). Plasma Spray Physical Vapor Deposition of La1−x Sr x Co y Fe1−y O3−δ Thin-Film Oxygen Transport Membrane on Porous Metallic Supports. Journal of Thermal Spray Technology, 23(1-2), 213-219. doi:10.1007/s11666-013-0004-yMarcano, D., Mauer, G., Sohn, Y. J., Vaßen, R., Garcia-Fayos, J., & Serra, J. M. (2016). Controlling the stress state of La1−Sr Co Fe1−O3− oxygen transport membranes on porous metallic supports deposited by plasma spray–physical vapor process. Journal of Membrane Science, 503, 1-7. doi:10.1016/j.memsci.2015.12.029Marcano, D., Mauer, G., Vaßen, R., & Weber, A. (2017). Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD). Surface and Coatings Technology, 318, 170-177. doi:10.1016/j.surfcoat.2016.10.088D. Marcano, G. Mauer, Y.J. Sohn, A. Schwedt, M. Bram, M.E. Ivanova, R. Vaßen, Plasma spray-physical vapor deposition of single phase lanthanum tungstate for hydrogen gas separation membranes, t.b. submitted (2018).Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023Ried, P., Lorenz, C., Brönstrup, A., Graule, T., Menzler, N. H., Sitte, W., & Holtappels, P. (2008). Processing of YSZ screen printing pastes and the characterization of the electrolyte layers for anode supported SOFC. Journal of the European Ceramic Society, 28(9), 1801-1808. doi:10.1016/j.jeurceramsoc.2007.11.018R. Mücke, Sintering of ZrO2-electrolytes in multilayered assemblies of SOFC, PhD Thesis, Ruhr-University, Bochum, 2007.Amsif, M., Magrasó, A., Marrero-López, D., Ruiz-Morales, J. C., Canales-Vázquez, J., & Núñez, P. (2012). Mo-Substituted Lanthanum Tungstate La28–yW4+yO54+δ: A Competitive Mixed Electron–Proton Conductor for Gas Separation Membrane Applications. Chemistry of Materials, 24(20), 3868-3877. doi:10.1021/cm301723aDANIELS, A. U., LOWRIE, R. C., GIBBY, R. L., & CUTLER, I. B. (1962). Observations on Normal Grain Growth of Magnesia and Calcia. Journal of the American Ceramic Society, 45(6), 282-285. doi:10.1111/j.1151-2916.1962.tb11145.

    Characterization of La0.995Ca0.005NbO4/Ni anode functional layer by electrophoretic deposition in a La0.995Ca0.005NbO4 electrolyte based PCFC

    No full text
    The Electrophoretic Deposition (EPD) technique has been applied to the preparation of a porous La0.995Ca0.005NbO4/Ni composite anode layer, deposited on a porous pre-sintered La0.995Ca0.005NbO4/Ni support. Powders of La0.995Ca0.005NbO4 and NiO were suspended in a solution of acetylacetone, iodine and water. Selectivity in the composition of the deposited layer was analyzed as a function of the suspension compositions and deposition conditions. A quasi-symmetrical cell was produced by depositing La0.995Ca0.005NbO4 electrolyte layer on the anode layer by EPD, and by applying a porous La0.995Ca0.005NbO4/Ni counter electrode on the dense electrolyte layer by brushing. The performance of the electrodes was evaluated by electrochemical impedance spectroscopy in 3% wet H-2. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved
    corecore