101 research outputs found
Habitability of Super-Earths: Gliese 581c and 581d
The unexpected diversity of exoplanets includes a growing number of
super-Earth planets, i.e., exoplanets with masses smaller than 10 Earth masses.
Unlike the larger exoplanets previously found, these smaller planets are more
likely to have a similar chemical and mineralogical composition to the Earth.
We present a thermal evolution model for super-Earth planets to identify the
sources and sinks of atmospheric carbon dioxide. The photosynthesis-sustaining
habitable zone (pHZ) is determined by the limits of biological productivity on
the planetary surface. We apply our model to calculate the habitability of the
two super-Earths in the Gliese 581 system. The super-Earth Gl 581c is clearly
outside the pHZ, while Gl 581d is at the outer edge of the pHZ. Therefore it
could at least harbor some primitive forms of life.Comment: 3 pages, 1 figure; submitted to: Exoplanets: Detection, Formation and
Dynamics, IAU Symposium 249, eds. Y.-S. Sun, S. Ferraz-Mello, and J.-L. Zhou
(Cambridge: Cambridge University Press
The fate of Earth’s ocean
Questions of how water arrived on the Earth’s surface, how much water is contained in the Earth system as a whole, and how much water will be available in the future in the surface reservoirs are of central importance to our understanding of the Earth. To answer the question about the fate of the Earth’s ocean, one has to study the global water cycle under conditions of internal and external forcing processes. Modern estimates suggest that the transport of water to the surface is five times smaller than water movement to the mantle, so that the Earth will lose all its sea-water in one billion years from now. This straightforward extrapolation of subduction-zone fluxes into the future seems doubtful. Using a geophysical modelling approach it was found that only 27% of the modern ocean will be subducted in one billion years. Internal feedbacks will not be the cause of the ocean drying out. Instead, the drying up of surface reservoirs in the future will be due to the increase in temperature caused by a maturing Sun connected to hydrogen escape to outer space.</p> <p style='line-height: 20px;'><b>Keywords: </b>Surface water reservoir, water fluxes, regassing, degassing, global water cycl
Habitability of the Goldilocks Planet Gliese 581g: Results from Geodynamic Models
Aims: In 2010, detailed observations have been published that seem to
indicate another super-Earth planet in the system of Gliese 581 located in the
midst of the stellar climatological habitable zone. The mass of the planet,
known as Gl 581g, has been estimated to be between 3.1 and 4.3 Earth masses. In
this study, we investigate the habitability of Gl 581g based on a previously
used concept that explores its long-term possibility of photosynthetic biomass
production, which has already been used to gauge the principal possibility of
life regarding the super-Earths Gl 581c and Gl 581d. Methods: A thermal
evolution model for super-Earths is used to calculate the sources and sinks of
atmospheric carbon dioxide. The habitable zone is determined by the limits of
photosynthetic biological productivity on the planetary surface. Models with
different ratios of land / ocean coverage are pursued. Results: The maximum
time span for habitable conditions is attained for water worlds at a position
of about 0.14+/-0.015 AU, which deviates by just a few percent (depending on
the adopted stellar luminosity) from the actual position of Gl 581g, an
estimate that does however not reflect systematic uncertainties inherent in our
model. Therefore, in the framework of our model an almost perfect Goldilock
position is realized. The existence of habitability is found to critically
depend on the relative planetary continental area, lending a considerable
advantage to the possibility of life if Gl 581g's ocean coverage is relatively
high. Conclusions: Our results are a further step toward identifying the
possibility of life beyond the Solar System, especially concerning super-Earth
planets, which appear to be more abundant than previously surmised.Comment: 5 pages, 3 figures, 1 table; in pres
The habitability of super-Earths in Gliese 581
Aims: The planetary system around the M star Gliese 581 consists of a hot
Neptune (Gl 581b) and two super-Earths (Gl 581c and Gl 581d). The habitability
of this system with respect to the super-Earths is investigated following a
concept that studies the long-term possibility of photosynthetic biomass
production on a dynamically active planet. Methods: A thermal evolution model
for a super-Earth is used to calculate the sources and sinks of atmospheric
carbon dioxide. The habitable zone is determined by the limits of biological
productivity on the planetary surface. Models with different ratios of land /
ocean coverage are investigated. Results: The super-Earth Gl 581c is clearly
outside the habitable zone, since it is too close to the star. In contrast, Gl
581d is a tidally locked habitable super-Earth near the outer edge of the
habitable zone. Despite the adverse conditions on this planet, at least some
primitive forms of life may be able to exist on its surface.Therefore, Gl 581d
is an interesting target for the planned TPF/Darwin missions to search for
biomarkers in planetary atmospheres.Comment: 6 pages, 4 figures, 2 table
Causes and timing of future biosphere extinctions
We present a minimal model for the global carbon cycle of the Earth containing the reservoirs mantle, ocean floor, continental crust, biosphere, and the kerogen, as well as the combined ocean and atmosphere reservoir. The model is specified by introducing three different types of biosphere: procaryotes, eucaryotes, and complex multicellular life. During the entire existence of the biosphere procaryotes are always present. 2 Gyr ago eucaryotic life first appears. The emergence of complex multicellular life is connected with an explosive increase in biomass and a strong decrease in Cambrian global surface temperature at about 0.54 Gyr ago. In the long-term future the three types of biosphere will die out in reverse sequence of their appearance. We show that there is no evidence for an implosion-like extinction in contrast to the Cambrian explosion. In dependence of their temperature tolerance complex multicellular life and eucaryotes become extinct in about 0.8–1.2 Gyr and 1.3–1.5 Gyr, respectively. The ultimate life span of the biosphere is defined by the extinction of procaryotes in about 1.6 Gyr
Генезис социальной инженерии в контексте междисциплинарности
Трансформация научного знания в условиях междисциплинарности, изменение парадигмы инженерного мышления по новому ставят проблему социальной инженерии. Ее решение требует обращения к истокам социальной инженерии. Проанализирован генезис и развитие социальной инженерии. Выявлено соотношение науки и дисциплины. Показана роль социальной инженерии в системе междисциплинарности
Recommended from our members
Long-term predictability of mean daily temperature data
We quantify the long-term predictability of global mean daily temperature data by means of the Rényi entropy of second order K2. We are interested in the yearly amplitude fluctuations of the temperature. Hence, the data are low-pass filtered. The obtained oscillatory signal has a more or less constant frequency, depending on the geographical coordinates, but its amplitude fluctuates irregularly. Our estimate of K2 quantifies the complexity of these amplitude fluctuations. We compare the results obtained for the CRU data set (interpolated measured temperature in the years 1901-2003 with 0.5° resolution, Mitchell et al., 20051) with the ones obtained for the temperature data from a coupled ocean-atmosphere global circulation model (AOGCM, calculated at DKRZ). Furthermore, we compare the results obtained by means of K2 with the linear variance of the temperature data
Recommended from our members
Self-stabilization of the biosphere under global change: A tutorial geophysiological approach
A 2-dimensional extension of the simple Lovelock-Watson model for geosphere-biosphere feed-back is introduced and discussed. Our enriched version also takes into account various pertinent physical, biological, and civilisatory processes like lateral heat transport, species competition, mutation, germination, and habitat fragmentation. The model is used as a caricature of the Earth System, which allows potential response mechanisms of the biosphere to environmental stress (as generated, e.g., by global warming or anthropogenic land-cover change) to be investigated qualitatively. Based on a cellular automaton representation of the system, extensive calculations are performed. They reveal a number of remarkable and, partially, counter-intuitive phenomena: our model biosphere is able to control almost perfectly the geophysical conditions for its own existence. If the environmental stress exceeds certain thresholds, however, life breaks down on the artificial planet via a first-order phase transition, i.e., in a non-reversible way. There is a close connection between self-stabilizing capacity, biodiversity and geometry of habitat fragmentation. It turns out, in particular, that unrestricted Darwinian competition, which reduces the number of co-existing species, is the best guarantee for survival of the artificial ecosphere as a whole
Long-term predictability of mean daily temperature data
International audienceWe quantify the long-term predictability of global mean daily temperature data by means of the Rényi entropy of second order K2. We are interested in the yearly amplitude fluctuations of the temperature. Hence, the data are low-pass filtered. The obtained oscillatory signal has a more or less constant frequency, depending on the geographical coordinates, but its amplitude fluctuates irregularly. Our estimate of K2 quantifies the complexity of these amplitude fluctuations. We compare the results obtained for the CRU data set (interpolated measured temperature in the years 1901-2003 with 0.5° resolution, Mitchell et al., 2005)with the ones obtained for the temperature data from a coupled ocean-atmosphere global circulation model (AOGCM, calculated at DKRZ). Furthermore, we compare the results obtained by means of K2 with the linear variance of the temperature data
- …