156 research outputs found
Conical intersections in an ultracold gas
We find that energy surfaces of more than two atoms or molecules interacting
via dipole-dipole po- tentials generically possess conical intersections (CIs).
Typically only few atoms participate strongly in such an intersection. For the
fundamental case, a circular trimer, we show how the CI affects adiabatic
excitation transport via electronic decoherence or geometric phase
interference. These phe- nomena may be experimentally accessible if the trimer
is realized by light alkali atoms in a ring trap, whose dipole-dipole
interactions are induced by off-resonant dressing with Rydberg states. Such a
setup promises a direct probe of the full many-body density dynamics near a
conical intersection.Comment: 4 pages, 4 figures, replacement to add archive referenc
Non-Markovian Dynamics in Ultracold Rydberg Aggregates
We propose a setup of an open quantum system in which the environment can be
tuned such that either Markovian or non-Markovian system dynamics can be
achieved. The implementation uses ultracold Rydberg atoms, relying on their
strong long-range interactions. Our suggestion extends the features available
for quantum simulators of molecular systems employing Rydberg aggregates and
presents a new test bench for fundamental studies of the classification of
system-environment interactions and the resulting system dynamics in open
quantum systems.Comment: 13 pages, 4 figure
Quantum simulation of energy transport with embedded Rydberg aggregates
We show that an array of ultracold Rydberg atoms embedded in a laser driven
background gas can serve as an aggregate for simulating exciton dynamics and
energy transport with a controlled environment. Spatial disorder and
decoherence introduced by the interaction with the background gas atoms can be
controlled by the laser parameters. This allows for an almost ideal realization
of a Haken-Reineker-Strobl type model for energy transport. Physics can be
monitored using the same mechanism that provides control over the environment.
The degree of decoherence is traced back to information gained on the
excitation location through the monitoring, turning the setup into an
experimentally accessible model system for studying the effects of quantum
measurements on the dynamics of a many-body quantum system.Comment: 5 pages, 4 figures, 3 pages supp. in
Quantum-field dynamics of expanding and contracting Bose-Einstein condensates
We analyze the dynamics of quantum statistics in a harmonically trapped
Bose-Einstein condensate, whose two-body interaction strength is controlled via
a Feshbach resonance. From an initially non-interacting coherent state, the
quantum field undergoes Kerr squeezing, which can be qualitatively described
with a single mode model. To render the effect experimentally accessible, we
propose a homodyne scheme, based on two hyperfine components, which converts
the quadrature squeezing into number squeezing. The scheme is numerically
demonstrated using a two-component Hartree-Fock-Bogoliubov formalism.Comment: 9 pages, 4 figure
A comparative study of dynamical simulation methods for the dissociation of molecular Bose-Einstein condensates
We describe a pairing mean-field theory related to the
Hartree-Fock-Bogoliubov approach, and apply it to the dynamics of dissociation
of a molecular Bose-Einstein condensate (BEC) into correlated bosonic atom
pairs. We also perform the same simulation using two stochastic phase-space
techniques for quantum dynamics -- the positive P-representation method and the
truncated Wigner method. By comparing the results of our calculations we are
able to assess the relative strength of these theoretical techniques in
describing molecular dissociation in one spatial dimension. An important aspect
of our analysis is the inclusion of atom-atom interactions which can be
problematic for the positive-P method. We find that the truncated Wigner method
mostly agrees with the positive-P simulations, but can be simulated for
significantly longer times. The pairing mean-field theory results diverge from
the quantum dynamical methods after relatively short times.Comment: 11 pages, 7 figures, corrected typos, minor content change
Dynamical formation and interaction of bright solitary waves and solitons in the collapse of Bose-Einstein condensates with attractive interactions
We model the dynamics of formation of multiple, long-lived, bright solitary
waves in the collapse of Bose-Einstein condensates with attractive interactions
as studied in the experiment of Cornish et al. [Phys. Rev. Lett. 96 (2006)
170401]. Using both mean-field and quantum field simulation techniques, we find
that while a number of separated wave packets form as observed in the
experiment, they do not have a repulsive \pi phase difference that has been
previously inferred. We observe that the inclusion of quantum fluctuations
causes soliton dynamics to be predominantly repulsive in one dimensional
simulations independent of their initial relative phase. However, indicative
three-dimensional simulations do not support this conclusion and in fact show
that quantum noise has a negative impact on bright solitary wave lifetimes.
Finally, we show that condensate oscillations, after the collapse, may serve to
deduce three-body recombination rates, and that the remnant atom number may
still exceed the critical number for collapse for as long as three seconds
independent of the relative phases of the bright solitary waves.Comment: 14 pages, 5 figure
Phase-imprinting of Bose-Einstein condensates with Rydberg impurities
We show how the phase profile of Bose-Einstein condensates can be engineered through its in- teraction with localized Rydberg excitations. The interaction is made controllable and long-range by off-resonantly coupling the condensate to another Rydberg state with laser light. Our technique allows the mapping of entanglement generated in systems of few strongly interacting Rydberg atoms onto much larger atom clouds in hybrid setups. As an example we discuss the creation of a spatial mesoscopic superposition state from a bright soliton. Additionally, the phase imprinted onto the condensate using the Rydberg excitations is a diagnostic tool for the latter. For example a condensate time-of-flight image would permit reconstructing the pattern of an embedded Rydberg crystal
3D flow in the venom channel of a spitting cobra: do the ridges in the fangs act as fluid guide vanes?
The spitting cobra Naja pallida can eject its venom towards an offender from a distance of up to two meters. The aim of this study was to understand the mechanisms responsible for the relatively large distance covered by the venom jet although the venom channel is only of micro-scale. Therefore, we analysed factors that influence secondary flow and pressure drop in the venom channel, which include the physical-chemical properties of venom liquid and the morphology of the venom channel. The cobra venom showed shear-reducing properties and the venom channel had paired ridges that span from the last third of the channel to its distal end, terminating laterally and in close proximity to the discharge orifice. To analyze the functional significance of these ridges we generated a numerical and an experimental model of the venom channel. Computational fluid dynamics (CFD) and Particle-Image Velocimetry (PIV) revealed that the paired interior ridges shape the flow structure upstream of the sharp 90° bend at the distal end. The occurrence of secondary flow structures resembling Dean-type vortical structures in the venom channel can be observed, which induce additional pressure loss. Comparing a venom channel featuring ridges with an identical channel featuring no ridges, one can observe a reduction of pressure loss of about 30%. Therefore it is concluded that the function of the ridges is similar to guide vanes used by engineers to reduce pressure loss in curved flow channels
- …