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We analyze the dynamics of quantum statistics in a harmonically trapped Bose-Einstein condensate, whose
two-body interaction strength is controlled via a Feshbach resonance. From an initially noninteracting coherent
state, the quantum field undergoes Kerr squeezing, which can be qualitatively described with a single mode
model. To render the effect experimentally accessible, we propose a homodyne scheme, based on two hyperfine
components, which converts the quadrature squeezing into number squeezing. The scheme is numerically
demonstrated using a two-component Hartree-Fock-Bogoliubov formalism.
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I. INTRODUCTION

Multimode quantum fields are the appropriate description
for a vast array of phenomena in high-energy physics, con-
densed matter physics, and cosmology, but they are notori-
ously difficult to analyze theoretically. Unlike many quantum
fields, it appears feasible that those describing degenerate
Bose and Fermi gases can be experimentally manipulated,
detected, and studied. The development of techniques for this
could have broad influence on a variety of outstanding prob-
lems in physics. Understanding the many-body quantum
state of a Bose-Einstein condensate �BEC� is relevant for
systems including: squeezed atom-lasers �1�, simulations of
cosmological particle production in the early universe �2–5�,
generation of multiparticle entanglement for quantum infor-
mation processing �6�, and the quantitative description of
collapsing condensates due to attractive interactions �7–9�.

The quantum field equations describing expanding and
collapsing condensates are analogs of those describing a
quantum field on a curved space-time �2�. Learning to ex-
perimentally manipulate and study the analog system pro-
vided by expanding and collapsing condensates promises us
a new window on processes such as signature change that
may be relevant for the evolution of the early universe �10�.
The quantum field of expanding and contracting condensates
is the subject of this paper. While quantum-field models exist
to approximately describe the time evolution of Gaussian
quantum states in such nonequilibrium situations �11–20�,
they require us to specify the initial quantum state of the
condensate, which is complicated if interactions are present
�21–23�.

Due to the controllability of atomic interactions by Fesh-
bach resonances, quantum field dynamics in a BEC can,
however, be examined starting from a noninteracting initial
state. Then, we assume that the many-body quantum state is
represented by a coherent state; perhaps originating from a
mixture of all different phases, as in the optical laser �24�.
This initial situation was realized in experiments on collaps-
ing Bose-Einstein condensates with attractive interactions

�25�. We also theoretically consider it here, but with interac-
tions suddenly rendered attractive or repulsive.

We show that the condensate’s state evolves from coher-
ent to quadrature squeezed due to the Kerr effect. For repul-
sive interactions a single-mode model provides a qualitative
description of the squeezing. However, a multimode analysis
is required for a quantitative description, especially in the
attractive case.

The experimental detection of quadrature squeezing re-
quires a phase reference, such as in homodyne detection
�26�. We propose such a scheme based on a splitting of the
Bose-Einstein condensate into two separately conserved hy-
perfine components. We demonstrate the proposal using two-
component Hartree-Fock-Bogoliubov �HFB� theory with re-
alistic experimental parameters. The homodyne detection is
found reliable even in the presence of imperfections such as
interactions between the local oscillator component and the
squeezing field. Also the Kerr squeezing of the local oscilla-
tor itself does not prevent us from attaining a measurable
reduction of the number variance.

Our system of two interacting components may also be
used to produce spin squeezing, a property of the two en-
tangled components �6�. However, spin squeezing is inciden-
tal to our goal of generating and detecting quadrature squeez-
ing, which is a property of a single component.

A single mode model of Kerr squeezing has previously
been found useful despite the presence of multimode effects
�1�. The authors of Ref. �1� also observe that the interference
of two quadrature squeezed atom lasers can yield a number
squeezed state, in accordance with our successful simulation
of the homodyne scheme with squeezed local oscillator. In
contrast to Ref. �1�, which is focused on the creation of a
squeezed atom laser, we consider a simpler setup and target
studies of quantum field dynamics. A core ingredient in our
work is a Feshbach resonance, allowing the use of a simple
coherent initial state.

This paper is organized as follows. Section II provides a
brief overview of the three quantum theories employed: the
single mode model, HFB theory, and the truncated Wigner
approximation �TWA�. In Sec. III we analyze Kerr squeezing
in a harmonically trapped condensate and in Sec. IV propose
a matter-wave homodyne scheme to detect it. Technical de-
tails regarding variances in the HFB formalism as well as the
two-component HFB equations of motion can be found in
Appendixes A and B.
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II. METHODS

An ensemble of Bose condensed atoms in a harmonic trap
is described by the many-body Hamiltonian

Ĥ =� d3x�̂†�x�Ĥ0�x��̂�x� +
U0

2
�̂†�x��̂†�x��̂�x��̂�x� ,

�1�

where

Ĥ0�x� = −
�2

2m
�x

2 + V�x� �2�

is the single particle Hamiltonian and �̂�x� denotes the field
operator in the Heisenberg picture that annihilates atoms of
mass m at position x. We have assumed a contact interaction
of strength U0=4��2as�t� /m with time-dependent scattering
length as�t� and a spherically symmetric harmonic potential
V�x�=m�2x2 /2. Note that we use the physical coupling for
the parameter U0 directly, rather than the bare coupling,
which we justify in Sec. II B. The Heisenberg equation for
the field operator is

i�
��̂�x�

�t
= Ĥ0�̂�x� + U0�̂†�x��̂�x��̂�x� . �3�

In the following subsections we briefly introduce several
methods to obtain approximate solutions to this multimode
quantum field problem.

A. Single mode Kerr squeezing

Among the single particle bases in which we can analyze
the atom-field dynamics of Eq. �3�, the harmonic oscillator
basis takes a special role. The condensate is initially assumed
to be noninteracting and in the trap ground state. Thus in the
oscillatory basis we assume it is in a coherent state of one
single particle mode.

Let us expand the field operator as �̂�x�=�k=0
� �k�x�âk.

The �k�x� are the eigenstates of the single particle Hamil-
tonian for a harmonic potential, with a collective index k
labeling all quantum numbers. The operator âk annihilates an

atom in eigenstate �k�x�, with Ĥ0�k�x�=��k�k�x�. Using
this expansion, we can rewrite Eq. �3� as

i�
�

�t
âk = ��kâk + �

lmn

Uklmnâl
†âmân. �4�

The Uklmn are overlap integrals of the form

Uklmn = U0� d3x�k
��x��l

��x��m�x��n�x� . �5�

Initially all the atoms are in state �0�x�, and for short times
we can approximate Eq. �4� by

i�
�

�t
â0 = ��0â0 + U0000â0

†â0â0. �6�

Using the trap ground state �0�x�=A exp�−r2 / �2�2�� with
A= ���2�−3/4, �= ��m /��−1/2, we find U0000=U0�2��2�−3/2.

The ground-state energy term in Eq. �6� can be eliminated

using rotating frame operators b̂=exp�i�0t�â0. The equation

of motion then becomes i �
�t b̂=−�b̂†b̂b̂, with �=U0000 /�. It is

known that this operator equation gives rise to Kerr squeez-
ing �26� in the evolution of the quantum state. Further details
can be found in Ref. �1�. Here we merely state the most
important facts.

One can define quadratures for the state �0�x� as

X̂	 = â0
†ei	 + â0e−i	. �7�

The variance of these operators �
X̂	�2= ��X̂	�2�− �X̂	�2 gives
information about the shape of the quantum state’s Wigner
function in phase space �26�. In the Kerr effect the variance
in one quadrature 	sqz drops below the value for a coherent

state ��
X̂	�2=1�, while for the orthogonal quadrature 	sqz

+� /2 it increases.

B. Hartree-Fock-Bogoliubov theory

To go beyond the previous section and include multimode
aspects of the quantum evolution, we make use of the HFB

formalism �11–14�. Thus we decompose �̂�x� into a conden-
sate part ��x� and quantum fluctuations �̂�x�, such that

�̂�x�=��x�+ �̂�x� and ��̂�x��=��x�. The quantum fluctua-
tions can be described in terms of their lowest order correla-
tion functions: the normal density GN�x ,x��= ��̂†�x���̂�x��
and anomalous density GA�x ,x��= ��̂�x���̂�x��. The resulting
equations of motion and their implementation for a spheri-
cally symmetric, trapped condensate have been described in
Refs. �8,9�.

We now explain how to calculate variances of the oscil-
lator ground state quadratures �7� in HFB theory. Since we

have âk=	d3x�k
��x��̂�x�, we can use

�âk
†âk�� =� d3x� d3x��k��x���k

��x���̂†�x���̂�x�� . �8�

Expressions such as Eq. �8� are all we need to extract the

quadrature variance of the trap ground state �
X̂	�2 from our
HFB simulations using spherical symmetry �described in
Ref. �8��. The result for the variance of the 	 quadrature is

�
X̂0
	�2 = 1 + 2� d3x� d3x�
�0�x���0�x��GN�x,x��

+ 2Re��0
��x���0

��x�GA�x,x��e−2i	�� . �9�

For our analysis of the homodyne scheme we are also inter-

ested in the variance of the total atom number. Using N̂

=	d3x�̂†�x��̂�x� we derive

�
N̂�2 = Ntot +� d3x� d3x�
2Re����x����x��GA�x,x���

+ 2���x���x��GN�x,x�� + ��GA�x,x���2

+ �GN�x,x���2�� . �10�

Further details about the form of Eqs. �9� and �10� that we
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use for numerical solutions in spherically symmetric situa-
tions, are given in Appendix A.

In this work we have found that the results are indepen-
dent of the numerical cutoff K=� /
x, where 
x is the grid
spacing, only without coupling renormalization. As previ-
ously noted �13,27�, the diagonal part of GA is the only di-
vergent quantity in the formalism. However, this contributes
negligibly to the variances of interest here, Eqs. �9� and �10�.

C. Truncated Wigner theory

We have highlighted the value of verifying numerical
quantum-field theory results for a BEC by using two quite
different formalisms in Ref. �9�. Here we follow the same
approach, by investigating quadrature squeezing using the
HFB method as well as the truncated Wigner approximation
�TWA� �15–18,20�. We have given a compact summary of
the method and its implementation in Ref. �9�. Our TWA
simulations are based on solutions of the relevant stochastic
differential equation in the harmonic oscillator basis �19�.
The theory is then expressed in terms of the stochastic wave
function ��x�=�n�n�n�x�.

To determine the quadrature variances in this framework,
we use the appropriate correspondences between averages of
the stochastic wave functions and operator expectation val-
ues. Most importantly �16�:

�n
��m →

1

2
���̂n

†�̂m� + ��̂m�̂n
†�� . �11�

Using Eq. �11� we obtain

�
X̂0
	�2 = 2��0

��0 − ��0�2� + 2Re
��0�0 − �0
2�e−2i	� .

�12�

III. SQUEEZING OF THE GROUND STATE

In this section we discuss our simulations of ground-state
quadrature squeezing in a harmonically trapped condensate
using the TWA and HFB. We begin with a 87Rb condensate
of 6000 atoms in a spherical trap with �=12.82� Hz.
Initially, the interaction between the atoms is tuned to zero
by use of a Feshbach resonance so that all atoms occupy the
trap ground state. The scattering length is then suddenly
switched to an either attractive or repulsive value, which we
label adyn.

We consider two cases: scenario I with adyn=−12a0 and
scenario II with adyn= +12a0. In scenario I the condensate
contracts, as expected. We evolve it for 5 ms, which is less
than the Gross-Pitaevskii–HFB collapse time �25� of about
7.5 ms for this interaction strength �8�. More than 96% of the
population stays in the trap ground state mode for these 5
ms. All this is shown in Fig. 1. For the repulsive interactions
in scenario II, the BEC is stable and we evolve it for the
longer span of 45 ms. During this time the cloud performs
roughly one breathing oscillation as shown in Fig. 1�b�. Less
population is transferred to non-ground-state modes than in
the attractive case.

We determine the evolution of the quantum state of the
condensate in the HFB approximation. The initial state is a
coherent state, with GA=GN=0, and these correlation func-
tions evolve nonzero values describing the Kerr squeezing.
Our numerical results are shown in Fig. 2. They show sig-
nificant quadrature squeezing, which evolves to a maximum
and then decreases. We find the largest squeezing in the re-
pulsive case �scenario II�: up to 9 dB. These results are com-
pared with the predictions of the single mode model of Sec.
II A. For the repulsive scenario II the single mode model
approximates the maximal squeezing attained and the time
scale on which it occurs. For the attractive scenario I the
single mode model is accurate only for short times. This is
due to the contractive dynamical instability resulting in
greater production of uncondensed atoms than in the repul-
sive case �9,28�.
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FIG. 1. �Color online� Evolution of the condensate density and
ground state population for scenarios I �a�,�c� and II �b�,�d�, as
described in the text. The ground-state population in panels �c� and
�d� is defined by N0=	d3x�0�x����x�. In either case the mean field
undergoes visible change of shape but nonetheless most of the
population remains in the ground state �c�,�d�. Note the different
time-scales for the two scenarios, and that the spatial axis is a radial
coordinate.
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FIG. 2. Minimum quadrature variances V=min	�
X̂	�2 corre-
sponding to maximal squeezing versus evolution time. We compare
HFB simulations �, Eq. �A4�� with truncated Wigner results �solid
line, Eq. �12�, the dotted lines indicate the sampling error�. �a� Sce-
nario I. �b� Scenario II. Both panels also include the corresponding
analytical result for the single mode Kerr effect �dashed�. We use
Eq. �1� of Ref. �1�, with �=0.0134.

QUANTUM-FIELD DYNAMICS OF EXPANDING AND ... PHYSICAL REVIEW A 77, 023619 �2008�

023619-3



IV. MATTER-WAVE HOMODYNE SCHEME

Experimentally one can measure the uncertainty of ob-
servables, such as the total atom number in a BEC, by deter-
mining the shot-to-shot variance. However, the Hamiltonian

�1� commutes with the number operator N̂=	d3x�̂†�̂, so it,
and its statistics, are conserved. The squeezing described in
Sec. III must therefore occur along some quadrature angle
	�0 of Eq. �7� and cannot be experimentally measured
without the phase reference provided by the local oscillator
of a homodyne scheme �26�. Homodyne detection is well
established in quantum optics. Its core ingredient is a strong
laser beam whose quantum state is coherent. Its phase pro-
vides the reference necessary to extract the noise amplitude
in any quadrature. In this section we propose a homodyne
scheme for Bose-Einstein condensates in a harmonic trap,
making use of interference between different hyperfine states
of the condensed atoms.

To this end, we consider a condensate with two compo-
nents denoted by �1� and �2�. Atoms are converted between
components by applying electromagnetic fields; for example,
using microwave and rf fields in the 87Rb experiments of
Refs. �29,30�. The Hamiltonian for our two component Bose
gas is hence

Ĥ =� d3x �
i=1,2

�̂i
†�−

�2�2

2m
+ V��̂i + �

i,j=1,2

Uij

2
�̂i

†�̂ j
†�̂ j�̂i

+ ��̂1
†�̂2 + ���̂2

†�̂1� . �13�

The field operator �i�x� carries a hyperfine index i=1,2 and
its spatial argument is suppressed in Eq. �13�. We assume
identical traps for both components. There are two intraspe-
cies �U11, U22� and one interspecies �U12=U21� interaction
strength. The magnitude of the coupling coefficient ���, the
Rabi frequency, controls the rate of conversion between the
species. The phase of � controls the relative phase of the
two atomic components �see Sec. IV B�.

A. Homodyne detection

Let �̂ denote an atomic field, represented by component
�1�, that undergoes Kerr squeezing. The spatial argument x is

suppressed and we will denote �̂�x�� by �̂�. Let �̂ denote
the local oscillator atomic field, represented by component
�2�, which we assume to be at all times in a coherent state

��̂�x��=b�x�ei	�x�, with b�x� and 	�x� some real functions.
We also assume a large amplitude for the local oscillator

�b�x��2 � ��̂†�x��̂�x�� . �14�

In the following we denote X̂	=�̂e−i	+�̂†ei	, where 	�x� is
abbreviated to 	, suppressing the spatial dependence, and
	�x�� is abbreviated to 	�.

We denote the combined field �̂=�̂+�̂, and determine its

number variance; �
N̂tot�2= �N̂tot
2 �− �N̂tot�2 for N̂tot

=	d3x�̂†�x��̂�x�. The total number uncertainty can be ob-
tained from

�N̂tot
2 � =� d3x� d3x����̂ + �̂�†��̂ + �̂�

��̂� + �̂��†��̂� + �̂���

=� d3x� d3x�
��̂†�̂�̂†��̂�� + ��̂†�b2�bei	�

+ ��̂†��b2b�ei	� + ��̂�b2�be−i	 + ��̂��b2b�e−i	�

+ b2��̂†��̂�� + b2���̂†�̂� + bb�e−i�	�−	���̂†�̂��

+ bb�e−i�	−	����̂�̂†�� + bb�e−i�	+	����̂�̂��

+ bb�ei�	+	����̂†��̂†� + b2b2� + be−i	��̂�̂†��̂��

+ bei	��̂†�̂†��̂�� + b�e−i	���̂†�̂�̂��

+ b�ei	���̂†�̂�̂†�� �15�

and

�N̂tot� =� d3x���̂†�̂� + b�x��X̂	� + b�x�2� . �16�

In writing Eq. �15� we have factored the correlations between

the fields �̂ and �̂. With a strong local oscillator, Eq. �14�,
we need only retain the leading order in b and obtain

�
N̂tot�2 =� d3x� d3x�b�x�b�x��
e−i�	−	����3�x − x��

+ GN�x,x��� + ei�	−	��GN�x�,x� + e−i�	+	��GA�x,x��

+ ei�	+	��GA
��x,x���

= Ntot�1 + 2� d3x� d3x��0�x��0�x��

�e−i�	�−	�GN�x,x��

+ Re� d3x� d3x�e−i�	�+	�GA�x,x����� . �17�

For the last equality, we have assumed that the local oscilla-
tor is in the trap ground state, so that b�x�=�0�x��N2

��0�x��Ntot. N2 is the atom number in the local oscillator
and we have noted that the local oscillator is highly popu-
lated compared to the squeezed field. If we also assume that
the phase of the local oscillator is homogenous 	�x�=	�x��
=	 we can write

�
N̂tot�2 = Ntot�
X̂0
	�2 �18�

using Eq. �9�. The quadrature angle 	 is here given by the
phase angle of the local oscillator condensate. Through the
mixing of the local oscillator with the squeezed field, the
quadrature of reduced uncertainty can be rotated into the
number “quadrature.”
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B. Component mixing

The experimental scheme we are modeling uses two
pulses of radiation resulting in a nonzero � in Eq. �13�. The
first creates a small component �1� field from an initial, large,
noninteracting component �2� field. Component �1� is the
field whose squeezing we seek to measure, and component
�2� serves as the local oscillator. Between the first and second
pulses the Kerr squeezing evolves, due to self-interaction in
the �1� component. The second pulse, a time tevolve after the
first, mixes the target field and the local oscillator so that the
quadrature squeezing may be inferred from the number
variance.

The particular quadrature measured is determined by the
phase of the complex coupling �. Since this is the phase of
an rf field, it may be easily adjusted between the two pulses,
allowing access to all quadratures.

We now consider the electromagnetic coupling in more
detail. When it is switched on, the atoms undergo Rabi os-
cillations between the hyperfine components. These can be
understood by isolating the relevant parts of the Heisenberg
equations for the field operators

i��̂
˙

1 = ��̂2, i��̂
˙

2 = ��̂1. �19�

These have the solutions �31�

�̂1 = �̂1�0�cos����t/�� − i
�

���
�̂2�0�sin����t/�� ,

�20�

�̂2 = �̂2�0�cos����t/�� − i
���
�

�̂1�0�sin����t/�� .

After t= t�/2=�� / �4�� the trigonometric functions have the
value 1 /�2 and each field has equal contributions from the
initial fields, called a � /2 pulse, with a relative phase deter-
mined by the phase of the coupling coefficient �. The modu-
lus of � is chosen such that t�/2� tevolve.

C. Feshbach resonances

The situation described in Sec. IV A will be difficult to
achieve. Since we require more atoms in the local oscillator
component �2� than in the component in which we wish to
measure Kerr squeezing �1�, this configuration will give rise
to Kerr squeezing in the local oscillator itself due to its self-
interaction �U22�, invalidating the assumption for it to be in a
coherent state. Further, there are interactions between the
local oscillator and the component to be measured �U12�,
which can even result in spatial phase separation �32�, and
will also affect component one’s Kerr squeezing.

Ideally, we would like to set U22=U12=0 using a Fesh-
bach resonance. However, this would require a rare coinci-
dence of resonances in two different scattering channels.
Hence we also consider three other options for improving the
situation with a Feshbach resonance: �i� increasing U11, pos-
sibly to the point that U22 and U12 can be neglected in com-
parison, �ii� turning off U12 only, and �iii� turning off U22
only. We will present detailed results for option �i� and
briefly comment on our findings for the other options, in-
cluding the ideal case.

D. Two-component Hartee-Fock-Bogoliubov theory

To investigate the ideas of the previous sections in a full
multimode quantum field simulation of the homodyne
scheme, we employ HFB theory. For the two-component
case the simulation uses two condensates �i= ��i� and six
correlation functions, as detailed in Appendix B. That appen-
dix also gives our HFB equations of motion.

We simulate the evolution of squeezing in component �1�
followed by mixing with a highly populated component �2�.
We show that this reduces the total number variance in one
component below the shot-noise limit, given by the number

in that component. Since both N̂1=	d3x�̂1
†�̂1 and N̂2

=	d3x�̂2
†�̂2 commute with the Hamiltonian �13� for �=0,

we expect the number variance of each component, Eq. �10�,
to change only during the mixing step.

E. Numerical results

Now we present two-component HFB simulations of the
homodyne scheme proposed in Sec. IV A. We assume the
BEC is initially split into a small cloud in component �1�,
which is to be squeezed, and a larger cloud in component �2�,
to serve as the local oscillator. We envisage the following
creation sequence. After condensation the BEC is adiabati-
cally brought to a noninteracting initial state with all atoms
in the same hyperfine component as done in Ref. �25�. Using
electromagnetically induced component mixing, the conden-
sate is then split into small and large condensates in different
states. This is the starting point of our simulations.

As discussed in Sec. IV C, after the splitting we assume
that only one of the three couplings Uij is tuned using a
Feshbach resonance. For the other two, we used the scatter-
ing lengths of the 87Rb hyperfine components �1�= �F
=1,mF=1� and �2�= �F=2,mF=−1� �32,33�, which are a11
=100.4a0, a22=95.47a0, and a21=98.10a0, where a0 is the
Bohr radius. We also considered parameters appropriate for
85Rb. For this case multicomponent scattering length data is
not available, thus we simply set both nonmanipulated scat-
tering lengths to a=−443a0 �34�. The initial numbers are
N1=600, N2=5400 both in a trap ground state. These states
are shown in Fig. 3�a�.

For the results shown in Fig. 4, we increased a11 by a
factor of 5 from its natural value, as in option �i�. This is not
enough to really make U22 and U12 negligible, however, we
found stronger interactions were not numerically tractable. In
such cases we find that the local oscillator becomes squeezed
as well, due to its self-interaction, however, �U11�� �U22� en-
sures that its squeezing does not much exceed that of
component 1.

For a time tevolve=0.4 ms we see that the ground state of
component 1, with adyn=502a0, develops a minimum
quadrature variance of about 0.86 �0.66 dB squeezing�. Dur-
ing this time, since the electromagnetic coupling is off, the
relative number variances �
Ni�2 /Ni remain 1 to within the
Gaussian approximation of the HFB method. The slight re-
duction in the relative number variances seen in Figs. 4�c�
and 4�d� is presumed to be due to the development of higher
order correlations than cannot be treated with the HFB, or
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TWA, method. After tevolve, we apply a nonzero coupling for
tpulse�5 �s, until the components have mixed to equal
populations, and the total number variance now reflects the
quadrature variance of the ground state of component 1 be-
fore the pulse, for a quadrature angle 	 which is controlled

by the phase of the coupling arg���. Changing this phase we
can pick up antisqueezed or squeezed quadratures, shown in
Figs. 4�c� and 4�d� and Fig. 3�b�.

We find that the homodyne scheme reduces the number
fluctuations of the atom field after recombination below N
despite squeezing of the local oscillator. Similar findings
have been reported in Ref. �1�.

In the case shown in Fig. 4, corresponding to option �i� in
Sec. IV C, we find that the squeezing does not increase much
with further evolution. Although it should increase with
higher values of a11 the results presented here are sufficient
to prove the principle of the homodyne scheme. For the other
two options �ii� and �iii� of Sec. IV C, we found that setting
U22 to zero without increasing U11 results in an even earlier
turn around of the squeezing in component 1, which is there-
fore negligible. Setting U12 to zero prevents this, but without
increasing U11 the local oscillator is much more squeezed
than the other component.

Finally, we examined a 85Rb-type scenario, with all three
scattering lengths negative. For our simulations we increased
the magnitude of a11 by a further factor of 5. This scenario is
feasible if the evolution time is much shorter than the col-
lapse time, but shows an earlier turnaround of squeezing than
the corresponding repulsive case.

F. Three-body loss

Losses due to three atoms combining to form a dimer
molecule and an energetic atom are a significant limiting
factor for some cold atom experiments. There are two rea-
sons why three-body loss might be a problem in our system:
it is enhanced near a Feshbach resonance, and the density in
the zero scattering length initial state is comparatively large
in the absence of repulsive interactions.

For the zero scattering length initial state, which is the
single particle trap ground state of frequency �, the rate
equation for the atom number loss is

Ṅtot = −
1

6
K3� m�

�3��
�3

Ntot
3 , �21�

where K3 is the three-body loss coefficient, the factor of 1/6
is because we are considering a condensate, and m is the
atomic mass.

An expression for the resonantly enhanced three-body
loss coefficient is given by Yurovsky and Ben-Reuven �35�.
Using their parameters we find that tuning to zero scattering
length near the strong 87Rb Feshbach resonance at 1007.34
G, the three-body loss coefficient is K3�710−39 m6 s−1,
which is about 200 times the background rate far from the
resonance �36�. The loss rate for the initial Ntot=6000 atoms

given by Eq. �21� is then Ṅtot�2000 s−1. Hence, less then
200 atoms are estimated to be lost in the first 100 ms, and we
conclude that three-body loss should not be a major problem
for our scheme.

V. CONCLUSIONS

We have shown that harmonically trapped condensates
with a Feshbach resonance provide a clean and stable system
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of the trap ground state for the quadrature with maximal squeezing,
Eq. �9�, is shown in panels �a�,�b�. The variance of the total number
in each component, Eq. �10�, is shown in panels �c�,�d� as a fraction
of the total atom number in each component. For the first 0.4 ms,
�=0, followed by a pulse of length f  tpulse= f 5 �s with �
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sequently, we again have �=0. The two curves use a different
reference phase: �solid� arg���=0.66�, �dashed� arg���=0.16�.
The grayed region shows the value achieved after the component
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until 0.6 ms as a visualization aid.
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to study the dynamics of quadrature squeezing in atomic
optics. We showed how to implement a matter-wave homo-
dyne scheme and numerically demonstrated it for experimen-
tally feasible parameters.

The insight into the squeezing evolution of vacuum fluc-
tuations that our scheme affords might be useful for analog
cosmology along the lines proposed in Refs. �3,4�. The Kerr
effect studied here eventually gives rise to strongly non-
Gaussian quantum fluctuations �26�. These have been conjec-
tured to cause a notable discrepancy between experiment and
theory in the collapse time of attractive BECs �9�. This as-
pect of Kerr squeezing in attractive condensates might merit
further study.
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APPENDIX A: QUANTUM VARIANCES IN THE
HARTREE-FOCK-BOGOLIUBOV FORMALISM

Here we provide details regarding Eq. �9� for a spherically
symmetric situation. We decompose the oscillator eigenstates
into a radial and an angular part �nlm�x�= fnl�r�Ylm�	 ,��,
where Ylm�	 ,�� is a spherical harmonic. We also expanded
the collective index k→nlm. Further we choose the spherical
polar coordinate system r�, ��, 	� for the vector x� such that
its z axis points along the vector x. 	� then denotes the angle
between x and x�, which appears as argument in the atom
field correlation functions for the case of spherical symmetry
�8�. Finally we use an expansion of GN in terms of Legendre
polynomials Ps:

GN�x,x�� = �
s=0

M

GN
�s��r,r��Ps�cos 	�� , �A1�

where r= �x�, r�= �x��. With this Eq. �8� becomes

�ânlm
† ân�l�m�� = �

0

�

drr2�
0

�

dr�r�2�
0

2�

d��
−1

1

d cos	

 �
0

2�

d���
−1

1

d cos	�

 �
s=0

M

Yl�m��	�,���Ylm
� �	,��Ps�cos	��

 GN
�s��r,r��fnl

� �r�fn�l��r�� . �A2�

For the oscillator ground state Y00=1 /�4�. This allows us to
carry out the angular integrations and obtain

�â000
† â000� = 4��

0

�

drr2�
0

�

dr�r�2GN
�0��r,r��f00

� �r�f00�r�� .

�A3�

We have used 	−1
1 dxPm�x�=2�m,0. Defining f00�r�= f̃00�r� /r

and GA/N
�m� �r ,r��= G̃A/N

�m� �r ,r�� /rr� we finally obtain

min	�
X̂0
	�2 = 1 + 8�
�

0

�

dr�
0

�

dr��G̃N
�0��r,r�� f̃00

� �r� f̃00�r��

− ��
0

�

dr�
0

�

dr��G̃A
�0��r,r�� f̃00�r� f̃00�r���� .

�A4�

Inserting the expansion in Legendre polynomials of the cor-
relation functions into Eq. �10� we can also obtain

�
N̂�2 = Ntot + 8�2� dR� dR�
Re��̃��R��̃��R��G̃A
�0��R,R��

+ �̃��R��̃�R��G̃N
�0��R,R����

+ 4�2� d3x� d3x��
s=0

M
1

2s + 1
 ��G̃A

�s��R,R���2 + �G̃N
�s�

�R,R���2� . �A5�

APPENDIX B: TWO-COMPONENT HARTREE-FOCK-
BOGOLIUBOV EQUATIONS

To follow the quantum evolution of our two-component
system through the initial squeezing stage past the mixing
step, we make use of the HFB formalism. The set of vari-
ables used in Ref. �8� must be extended to accommodate two
hyperfine states. We split the field operators into mean and

fluctuations: �̂1=�1+ �̂1, �̂2=�2+ �̂2, with ��̂n�=�n. We
then consider two condensates �1, �2 and six correlation
functions �using i� 
1,2��:

GNi�x,x�� = ��̂i
†�x���̂i�x�� , �B1�

GAi�x,x�� = ��̂i�x���̂i�x�� , �B2�

GCN�x,x�� = ��̂2
†�x���̂1�x�� , �B3�

GCA�x,x�� = ��̂2�x���̂1�x�� . �B4�

The equations of motion for the condensates and the corre-
lation functions GA/N,1/2 are partially identical to those previ-
ously presented �8�. However, additional terms exist in all of
them due to the coupling between the two hyperfine compo-
nents. In the following we use the notation of Ref. �8�,
in particular: ḠN1� ḠN1�x��GN1�x ,x�, �n��n�x�,
�n���n�x��, etc. We further introduce the abbreviations

nj = �� j�2+ ḠNj, � j =� j
2+ ḠAj, �=�2�1+ ḠCA, �=�2

��1+ ḠCN,
and H0j =−�2�x

2 / �2m�+V�x�+� j, H0j� =−�2�x�
2 / �2m�+V�x��

+� j, where we allowed possibly different detunings � j �not
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used in the present work�. Our equations of motion are then

i��̇1 = H01�1 + U11��2ḠN1 + ��1�2��1 + ḠA1�1
��

+ U12�n2�1 + ḠCN�2 + ḠCA�2
�� + ��2, �B5�

i�ĠN1�x,x�� = �H01 − H01� �GN1�x,x��

+ U11
2�n1 − n1��GN1�x,x�� + �1GA1�x,x���

− �1�
�GA1�x,x��� + U12
�n2 − n2��GN1�x,x��

+ �GCN�x�,x�� − ���GCN�x,x�� + �GCA�x�,x��

− ���GCA�x,x��� + �GCN�x�,x��

− ��GCN�x,x�� , �B6�

i�ĠA1�x,x�� = �H01 + H01� �GN1�x,x�� + U11
2�n1

+ n1��GA1�x,x�� + �1GN1�x,x��� + �1�GN1�x,x��

+ �1��3��x − x��� + U12
�n2 + n2��GA1�x,x��

+ �GCA�x�,x� + ��GCA�x,x�� + �GCN�x�,x�

+ ��GCN�x,x��� ,

+ ��GCA�x,x�� + GCA�x�,x�� , �B7�

Throughout we have used

��̂1
†�x���̂2�x�� = GCN�x�,x��, �B8�

��̂1
†�x���̂2

†�x�� = GCA�x�,x��. �B9�

One can deduce the equations for component two from those
of component one by using the following symmetry rela-
tions, under exchange of particle labels 1↔2:

GCN�x�,x�� ↔ GCN�x,x�� , �B10�

GCA�x�,x� ↔ GCA�x,x�� , �B11�

ḠCN ↔ ḠCN
� , �B12�

ḠCA ↔ ḠCA, �B13�

� ↔ ��. �B14�

The equations of motion for the cross correlation functions
are

i�ĠCN�x,x�� = �H01 − H02� �GCN�x,x�� + 2�U11n1

− U22n2��GCN�x,x�� + U11�1GCA
� �x,x��

− U22�2�
�GCA�x,x�� + U12
�n2 − n1��GCN�x,x��

+ �GA2�x,x��� − ���GA1�x,x�� + �GN2�x,x��

− ��GN1�x,x��� + ��GN2�x,x�� − GN1�x,x���
�B15�

and

i�ĠCA�x,x�� = �H01 + H02� �GCA�x,x�� + 2�U11n1

+ U22n2��GCA�x,x�� + U11�1GCN
� �x,x��

+ U22�2�GCN�x,x�� + U12
�n2 + n1��GCA�x,x��

+ ��GN2�x,x��� + ��3��x − x��� + ��GN1�x,x��

+ �GA2�x,x�� + ���GA1�x,x��� + �GA2�x,x��

+ ��GA1�x,x�� . �B16�
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