303 research outputs found

    Forced migrants involved in setting the agenda and designing research to reduce impacts of complex emergencies: combining Swarm with patient and public involvement

    Get PDF
    Background: Many events with wide-ranging negative health impacts are notable for complexity: lack of predictability, non-linear feedback mechanisms and unexpected consequences. A multi-disciplinary research team was tasked with reducing the public health impacts from complex events, but without a pre-specified topic area or research design. This report describes using patient and public involvement within an adaptable but structured development process to set research objectives and aspects of implementation. Methods: An agile adaptive development approach, sometimes described as swarm, was used to identify possible research areas. Swarm is meant to quickly identify strengths and weaknesses of any candidate project, to accelerate early failure before resources are invested. When aspects of the European migration crisis were identified as a potential priority topic area, two representatives of forced migrant communities were recruited to explore possible research ideas. These representatives helped set the specific research objectives and advised on aspects of implementation, still within the swarm framework for project development. Results: Over ten months, many research ideas were considered by the collaborative working group in a series of six group meetings, supplemented by email contact in between. Up to four possible research ideas were scrutinised at any one meeting, with a focus on identifying practical or desirable aspects of each proposed project. Interest settled on a study to solicit original data about successful strategies that forced migrants use to adapt to life in the UK, with an emphasis on successfully promoting resilience and minimizing emotional distress. “Success in resettlement” was identified to be a more novel theme than “barriers to adaption” research. A success approach encourages participation when individuals may find discussion of mental illness stigmatising. The patient representatives helped with design of patient-facing and interview training materials, interviewer training (mock interviews), and aspects of the recruitment. Conclusion: Using patient and public involvement (PPI) within an early failure development approach that itself arises from theory on complex adaptive systems, we successfully implemented a dynamic development process to determine research topic and study design. The PPI representatives were closely involved in setting research objectives and aspects of implementation

    Chlamydia trachomatis Co-opts the FGF2 Signaling Pathway to Enhance Infection

    Get PDF
    The molecular details of Chlamydia trachomatis binding, entry, and spread are incompletely understood, but heparan sulfate proteoglycans (HSPGs) play a role in the initial binding steps. As cell surface HSPGs facilitate the interactions of many growth factors with their receptors, we investigated the role of HSPG-dependent growth factors in C. trachomatis infection. Here, we report a novel finding that Fibroblast Growth Factor 2 (FGF2) is necessary and sufficient to enhance C. trachomatis binding to host cells in an HSPG-dependent manner. FGF2 binds directly to elementary bodies (EBs) where it may function as a bridging molecule to facilitate interactions of EBs with the FGF receptor (FGFR) on the cell surface. Upon EB binding, FGFR is activated locally and contributes to bacterial uptake into non-phagocytic cells. We further show that C. trachomatis infection stimulates fgf2 transcription and enhances production and release of FGF2 through a pathway that requires bacterial protein synthesis and activation of the Erk1/2 signaling pathway but that is independent of FGFR activation. Intracellular replication of the bacteria results in host proteosome-mediated degradation of the high molecular weight (HMW) isoforms of FGF2 and increased amounts of the low molecular weight (LMW) isoforms, which are released upon host cell death. Finally, we demonstrate the in vivo relevance of these findings by showing that conditioned medium from C. trachomatis infected cells is enriched for LMW FGF2, accounting for its ability to enhance C. trachomatis infectivity in additional rounds of infection. Together, these results demonstrate that C. trachomatis utilizes multiple mechanisms to co-opt the host cell FGF2 pathway to enhance bacterial infection and spread

    Attachment and Entry of Chlamydia Have Distinct Requirements for Host Protein Disulfide Isomerase

    Get PDF
    Chlamydia is an obligate intracellular pathogen that causes a wide range of diseases in humans. Attachment and entry are key processes in infectivity and subsequent pathogenesis of Chlamydia, yet the mechanisms governing these interactions are unknown. It was recently shown that a cell line, CHO6, that is resistant to attachment, and thus infectivity, of multiple Chlamydia species has a defect in protein disulfide isomerase (PDI) N–terminal signal sequence processing. Ectopic expression of PDI in CHO6 cells led to restoration of Chlamydia attachment and infectivity; however, the mechanism leading to this recovery was not ascertained. To advance our understanding of the role of PDI in Chlamydia infection, we used RNA interference to establish that cellular PDI is essential for bacterial attachment to cells, making PDI the only host protein identified as necessary for attachment of multiple species of Chlamydia. Genetic complementation and PDI-specific inhibitors were used to determine that cell surface PDI enzymatic activity is required for bacterial entry into cells, but enzymatic function was not required for bacterial attachment. We further determined that it is a PDI-mediated reduction at the cell surface that triggers bacterial uptake. While PDI is necessary for Chlamydia attachment to cells, the bacteria do not appear to utilize plasma membrane–associated PDI as a receptor, suggesting that Chlamydia binds a cell surface protein that requires structural association with PDI. Our findings demonstrate that PDI has two essential and independent roles in the process of chlamydial infectivity: it is structurally required for chlamydial attachment, and the thiol-mediated oxido-reductive function of PDI is necessary for entry

    Analysis of pmpD Expression and PmpD Post-Translational Processing during the Life Cycle of Chlamydia trachomatis Serovars A, D, and L2

    Get PDF
    BACKGROUND: The polymorphic membrane protein D (PmpD) in Chlamydia is structurally similar to autotransporter proteins described in other bacteria and may be involved in cellular and humoral protective immunity against Chlamydia. The mechanism of PmpD post-translational processing and the role of its protein products in the pathogenesis of chlamydial infection have not been very well elucidated to date. METHODOLOGY/PRINCIPAL FINDINGS: Here we examined the expression and post-translational processing of the protein product of the pmpD gene during the life cycle of C. trachomatis serovars A, D, and L2. Each of these three serovars targets different human organs and tissues and encodes a different pmpD gene nucleotide sequence. Our quantitative real-time reverse transcription polymerase chain reaction results demonstrate that the pmpD gene is up-regulated at 12-24 hours after infection regardless of the Chlamydia serovar. This up-regulation is coincidental with the period of exponential growth and replication of reticulate bodies (RB) of Chlamydia and indicates a probable similarity in function of pmpD in serovars A, D, and L2 of Chlamydia. Using mass spectrometry analysis, we identified the protein products of post-translational processing of PmpD of C. trachomatis serovar L2 and propose a double pathway model for PmpD processing, with one cleavage site between the passenger and autotransporter domains and the other site in the middle of the passenger domain. Notably, when Chlamydia infected culture cells were subjected to low (28 degrees C) temperature, PmpD post-translational processing and secretion was found to be uninhibited in the resulting persistent infection. In addition, confocal microscopy of cells infected with Chlamydia confirms our earlier hypothesis that PmpD is secreted outside Chlamydia and its secretion increases with growth of the chlamydial inclusion. CONCLUSION/SIGNIFICANCE: The results of this current study involving multiple Chlamydia serovars support the general consensus that the pmpD gene is maximally expressed at mid infection and provide new information about PmpD as an autotransporter protein which is post-translationally processed and secreted outside Chlamydia during normal and low temperature induced persistent chlamydial infection

    Disparity in Reimbursement for Tuberculosis Care Among Different Health Insurance Schemes: Evidence from Three Counties in Central China

    Get PDF
    Background: Health inequity is an important issue all around the world. The Chinese basic medical security system comprises three major insurance schemes, namely the Urban Employee Basic Medical Insurance (UEBMI), the Urban Resident Basic Medical Insurance (URBMI), and the New Cooperative Medical Scheme (NCMS). Little research has been conducted to look into the disparity in payments among the health insurance schemes in China. In this study, we aimed to evaluate the disparity in reimbursements for tuberculosis (TB) care among the abovementioned health insurance schemes. Methods: This study uses a World Health Organization (WHO) framework to analyze the disparities and equity relating to the three dimensions of health insurance: population coverage, the range of services covered, and the extent to which costs are covered. Each of the health insurance scheme’s policies were categorized and analyzed. An analysis of the claims database of all hospitalizations reimbursed from 2010 to 2012 in three counties of Yichang city (YC), which included 1506 discharges, was conducted to identify the differences in reimbursement rates and out-of-pocket (OOP) expenses among the health insurance schemes. Results: Tuberculosis patients had various inpatient expenses depending on which scheme they were covered by (TB patients covered by the NCMS have less inpatient expenses than those who were covered by the URBMI, who have less inpatient expenses than those covered by the UEBMI). We found a significant horizontal inequity of healthcare utilization among the lower socioeconomic groups. In terms of financial inequity, TB patients who earned less paid more. The NCMS provides modest financial protection, based on income. Overall, TB patients from lower socioeconomic groups were the most vulnerable. Conclusion: There are large disparities in reimbursement for TB care among the three health insurance schemes and this, in turn, hampers TB control. Reducing the gap in health outcomes between the three health insurance schemes in China should be a focus of TB care and control. Achieving equity through integrated policies that avoid discrimination is likely to be effective

    Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development

    Get PDF
    Background Chlamydia trachomatis (C. trachomatis) is a clinically significant human pathogen and one of the leading causative agents of sexually transmitted diseases. As obligate intracellular bacteria, C. trachomatis has evolved strategies to redirect the host’s signaling and resources for its own survival and propagation. Despite the clinical notoriety of Chlamydia infections, the molecular interactions between C. trachomatis and its host cell proteins remain elusive. Results In this study, we focused on the involvement of the host cell epidermal growth factor receptor (EGFR) in C. trachomatis attachment and development. A combination of molecular approaches, pharmacological agents and cell lines were used to demonstrate distinct functional requirements of EGFR in C. trachomatisinfection. We show that C. trachomatis increases the phosphorylation of EGFR and of its downstream effectors PLCγ1, Akt and STAT5. While both EGFR and platelet-derived growth factor receptor-β (PDGFRβ) are partially involved in bacterial attachment to the host cell surface, it is only the knockdown of EGFR and not PDGFRβ that affects the formation of C. trachomatis inclusions in the host cells. Inhibition of EGFR results in small immature inclusions, and prevents C. trachomatis-induced intracellular calcium mobilization and the assembly of the characteristic F-actin ring at the inclusion periphery. By using complementary approaches, we demonstrate that the coordinated regulation of both calcium mobilization and F-actin assembly by EGFR are necessary for maturation of chlamydial inclusion within the host cells. A particularly important finding of this study is the co-localization of EGFR with the F-actin at the periphery of C. trachomatis inclusion where it may function to nucleate the assembly of signaling protein complexes for cytoskeletal remodeling required for C. trachomatisdevelopment. Conclusion Cumulatively, the data reported here connect the function of EGFR to C. trachomatis attachment and development in the host cells, and this could lead to new venues for targeting C. trachomatis infections and associated diseases

    Lack of Effective Anti-Apoptotic Activities Restricts Growth of Parachlamydiaceae in Insect Cells

    Get PDF
    The fundamental role of programmed cell death in host defense is highlighted by the multitude of anti-apoptotic strategies evolved by various microbes, including the well-known obligate intracellular bacterial pathogens Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. As inhibition of apoptosis is assumed to be essential for a successful infection of humans by these chlamydiae, we analyzed the anti-apoptotic capacity of close relatives that occur as symbionts of amoebae and might represent emerging pathogens. While Simkania negevensis was able to efficiently replicate within insect cells, which served as model for metazoan-derived host cells, the Parachlamydiaceae (Parachlamydia acanthamoebae and Protochlamydia amoebophila) displayed limited intracellular growth, yet these bacteria induced typical features of apoptotic cell death, including formation of apoptotic bodies, nuclear condensation, internucleosomal DNA fragmentation, and effector caspase activity. Induction of apoptosis was dependent on bacterial activity, but not bacterial de novo protein synthesis, and was detectable already at very early stages of infection. Experimental inhibition of host cell death greatly enhanced parachlamydial replication, suggesting that lack of potent anti-apoptotic activities in Parachlamydiaceae may represent an important factor compromising their ability to successfully infect non-protozoan hosts. These findings highlight the importance of the evolution of anti-apoptotic traits for the success of chlamydiae as pathogens of humans and animals

    Visual Genome-Wide RNAi Screening to Identify Human Host Factors Required for Trypanosoma cruzi Infection

    Get PDF
    The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy and considerable side effects. Therefore, the development of new and more effective drugs is of paramount importance. Although some host cellular factors that play a role in T. cruzi infection have been uncovered, the molecular requirements for intracellular parasite growth and persistence are still not well understood. To further study these host-parasite interactions and identify human host factors required for T. cruzi infection, we performed a genome-wide RNAi screen using cellular microarrays of a printed siRNA library that spanned the whole human genome. The screening was reproduced 6 times and a customized algorithm was used to select as hits those genes whose silencing visually impaired parasite infection. The 162 strongest hits were subjected to a secondary screening and subsequently validated in two different cell lines. Among the fourteen hits confirmed, we recognized some cellular membrane proteins that might function as cell receptors for parasite entry and others that may be related to calcium release triggered by parasites during cell invasion. In addition, two of the hits are related to the TGF-beta signaling pathway, whose inhibition is already known to diminish levels of T. cruzi infection. This study represents a significant step toward unveiling the key molecular requirements for host cell invasion and revealing new potential targets for antiparasitic therapy

    Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface

    Get PDF
    A common assumption in traditional supervised learning is the similar probability distribution of data between the training phase and the testing/operating phase. When transitioning from the training to testing phase, a shift in the probability distribution of input data is known as a covariate shift. Covariate shifts commonly arise in a wide range of real-world systems such as electroencephalogram-based brain–computer interfaces (BCIs). In such systems, there is a necessity for continuous monitoring of the process behavior, and tracking the state of the covariate shifts to decide about initiating adaptation in a timely manner. This paper presents a covariate shift-detection and -adaptation methodology, and its application to motor imagery-based BCIs. A covariate shift-detection test based on an exponential weighted moving average model is used to detect the covariate shift in the features extracted from motor imagery-based brain responses. Following the covariate shift-detection test, the methodology initiates an adaptation by updating the classifier during the testing/operating phase. The usefulness of the proposed method is evaluated using real-world BCI datasets (i.e. BCI competition IV dataset 2A and 2B). The results show a statistically significant improvement in the classification accuracy of the BCI system over traditional learning and semi-supervised learning methods
    corecore