266 research outputs found

    Vacuum polarization induced by a uniformly accelerated charge

    Get PDF
    We consider a point charge fixed in the Rindler coordinates which describe a uniformly accelerated frame. We determine an integral expression of the induced charge density due to the vacuum polarization at the first order in the fine structure constant. In the case where the acceleration is weak, we give explicitly the induced electrostatic potential.Comment: 13 pages, latex, no figures, to appear in Int. J. Theor. Phys

    The Mouse INO80 Chromatin-Remodeling Complex Is an Essential Meiotic Factor for Spermatogenesis1

    Get PDF
    The ability to faithfully transmit genetic information across generations via the germ cells is a critical aspect of mammalian reproduction. The process of germ cell development requires a number of large-scale modulations of chromatin within the nucleus. One such occasion arises during meiotic recombination, when hundreds of DNA double-strand breaks are induced and subsequently repaired, enabling the transfer of genetic information between homologous chromosomes. The inability to properly repair DNA damage is known to lead to an arrest in the developing germ cells and sterility within the animal. Chromatin-remodeling activity, and in particular the BRG1 subunit of the SWI/SNF complex, has been shown to be required for successful completion of meiosis. In contrast, remodeling complexes of the ISWI and CHD families are required for postmeiotic processes. Little is known regarding the contribution of the INO80 family of chromatin-remodeling complexes, which is a particularly interesting candidate due to its well described functions during DNA double-strand break repair. Here we show that INO80 is expressed in developing spermatocytes during the early stages of meiotic prophase I. Based on this information, we used a conditional allele to delete the INO80 core ATPase subunit, thereby eliminating INO80 chromatin-remodeling activity in this lineage. The loss of INO80 resulted in an arrest during meiosis associated with a failure to repair DNA damage during meiotic recombination

    A novel antimatter detector based on X-ray deexcitation of exotic atoms

    Get PDF
    We propose a novel antiparticle detector. The gaseous antiparticle spectrometer (GAPS) effects particle identification through the characteristic X-rays emitted by antiparticles when they form exotic atoms in gases. GAPS obtains particularly high grasp (effective area-solid angle product) at lower particle energies, where conventional schemes are most limited in their utility. The concept is simple and lightweight, so it can be readily employed on balloon- and space-based missions. An extremely powerful potential application of GAPS is a space-based search for the neutralino through the detection of a neutralino annihilation by-product-the antideuteron. Paradoxically, this space-based search for the neutralino is capable of achieving comparable sensitivity to as yet unrealized third-generation, underground dark matter experiments. And GAPS can obtain this performance in a very modest satellite experiment. GAPS can also provide superior performance in searches for primary antiprotons produced via neutralino annihilation and black hole evaporation and in probing subdominant contributions to the antiproton flux at low energies. In a deep space mission, GAPS will obtain higher sensitivity for a given weight and power than BGO calorimeters

    Nuclear Reactions of Arsenic with 190-Mev Deuterons

    Full text link

    Effective one-band electron-phonon Hamiltonian for nickel perovskites

    Full text link
    Inspired by recent experiments on the Sr-doped nickelates, La2xSrxNiO4La_{2-x}Sr_xNiO_4, we propose a minimal microscopic model capable to describe the variety of the observed quasi-static charge/lattice modulations and the resulting magnetic and electronic-transport anomalies. Analyzing the motion of low-spin (s=1/2) holes in a high-spin (S=1) background as well as their their coupling to the in-plane oxygen phonon modes, we construct a sort of generalized Holstein t-J Hamiltonian for the NiO2NiO_2 planes, which contains besides the rather complex ``composite-hole'' hopping part non-local spin-spin and hole-phonon interaction terms.Comment: 12 pages, LaTeX, submitted to Phys. Rev.

    Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields

    Full text link
    Using the Pauli-Villars regularization and arguments from convex analysis, we construct solutions to the classical time-independent Maxwell equations in Dirac's vacuum, in the presence of small external electromagnetic sources. The vacuum is not an empty space, but rather a quantum fluctuating medium which behaves as a nonlinear polarizable material. Its behavior is described by a Dirac equation involving infinitely many particles. The quantum corrections to the usual Maxwell equations are nonlinear and nonlocal. Even if photons are described by a purely classical electromagnetic field, the resulting vacuum polarization coincides to first order with that of full Quantum Electrodynamics.Comment: Final version to appear in Arch. Rat. Mech. Analysi

    Self-consistent solution for the polarized vacuum in a no-photon QED model

    Full text link
    We study the Bogoliubov-Dirac-Fock model introduced by Chaix and Iracane ({\it J. Phys. B.}, 22, 3791--3814, 1989) which is a mean-field theory deduced from no-photon QED. The associated functional is bounded from below. In the presence of an external field, a minimizer, if it exists, is interpreted as the polarized vacuum and it solves a self-consistent equation. In a recent paper math-ph/0403005, we proved the convergence of the iterative fixed-point scheme naturally associated with this equation to a global minimizer of the BDF functional, under some restrictive conditions on the external potential, the ultraviolet cut-off Λ\Lambda and the bare fine structure constant α\alpha. In the present work, we improve this result by showing the existence of the minimizer by a variational method, for any cut-off Λ\Lambda and without any constraint on the external field. We also study the behaviour of the minimizer as Λ\Lambda goes to infinity and show that the theory is "nullified" in that limit, as predicted first by Landau: the vacuum totally kills the external potential. Therefore the limit case of an infinite cut-off makes no sense both from a physical and mathematical point of view. Finally, we perform a charge and density renormalization scheme applying simultaneously to all orders of the fine structure constant α\alpha, on a simplified model where the exchange term is neglected.Comment: Final version, to appear in J. Phys. A: Math. Ge

    In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-Synuclein within E. coli cells

    Get PDF
    α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution

    Renormalization and asymptotic expansion of Dirac's polarized vacuum

    Full text link
    We perform rigorously the charge renormalization of the so-called reduced Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based on the Dirac operator, describes atoms and molecules while taking into account vacuum polarization effects. We consider the total physical density including both the external density of a nucleus and the self-consistent polarization of the Dirac sea, but no `real' electron. We show that it admits an asymptotic expansion to any order in powers of the physical coupling constant \alphaph, provided that the ultraviolet cut-off behaves as \Lambda\sim e^{3\pi(1-Z_3)/2\alphaph}\gg1. The renormalization parameter $

    Measurement of nuclide cross-sections of spallation residues in 1 A GeV 238U + proton collisions

    Full text link
    The production of heavy nuclides from the spallation-evaporation reaction of 238U induced by 1 GeV protons was studied in inverse kinematics. The evaporation residues from tungsten to uranium were identified in-flight in mass and atomic number. Their production cross-sections and their momentum distributions were determined. The data are compared with empirical systematics. A comparison with previous results from the spallation of 208Pb and 197Au reveals the strong influence of fission in the spallation of 238U.Comment: 20 pages, 10 figures, background information at http://www-wnt.gsi.de/kschmidt
    corecore