102 research outputs found

    Complimentary protein extraction methods increase the identification of the Park Grass Experiment metaproteome

    Get PDF
    Although the Park Grass Experiment is an important international reference soil for temperate grasslands, it still lacks the direct extraction of its metaproteome. The identification of these proteins can be crucial to our understanding of soil ecology and major biogeochemical processes. However, the extraction of protein from soil is a technically fraught process due to difficulties with co-extraction of humic material and lack of compatible databases to identify proteins. To address these issues, we combined two protein extraction techniques on Park Grass experiment soil, one based on humic acid removal, namely a modified freeze-dry, heat/thaw/phenol/chloroform (HTPC) method and another which co-extracts humic material, namely an established surfactant method. A broad range of proteins were identified by matching the mass spectra of extracted soil proteins against a tailored Park Grass proteome database. These were mainly in the categories of “protein metabolism”, “membrane transport”, “carbohydrate metabolism”, “respiration” “ribosomal and nitrogen cycle” proteins, enabling reconstitution of specific processes in grassland soil. Protein annotation using NCBI and EBI databases inferred that the Park Grass soil is dominated by Proteobacteria, Actinobacteria, Acidobacteria and Firmicutes at phylum level and Bradyrhizobium, Rhizobium, Acidobacteria, Streptomyces and Pseudolabrys at genus level. Further functional enrichment analysis enabled us to connect protein identities to regulatory and signalling networks of key biogeochemical cycles, notably the nitrogen cycle. The newly identified Park Grass metaproteome thus provides a baseline on which future targeted studies of important soil processes and their control can be built

    Neutron-proton differential cross sections in the range 70 to 400 GeV/c

    Full text link
    We report the results of an experiment which measured np elastic scattering differential cross sections over a range in -t from 0.15 to ~3.6 (GeV/c)2 for incident neutron momenta from 70 to 400 GeV/c. We find the logarithmic slope parameter, evaluated at -t = 0.2 (GeV/c)2, to be consistent with existing proton-proton parametrizations. The data exhibit a dip in the cross section near -t = 1.4 (GeV/c)2 for incident neutron momenta above 200 GeV/c. For neutron momenta less than 280 GeV/c, the neutron-proton cross sections are found to be higher than existing proton-proton data in the range 0.7 [les] -t [les] 1.3 (GeV/c)2 which is in contradiction to most Regge predictions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23627/1/0000590.pd

    Convalescent troponin and cardiovascular death following acute coronary syndrome

    Get PDF
    Objectives: High-sensitivity cardiac troponin testing is used in the diagnosis of acute coronary syndromes but its role during convalescence is unknown. We investigated the long-term prognostic significance of serial convalescent high-sensitivity cardiac troponin concentrations following acute coronary syndrome. Methods: In a prospective multicentre observational cohort study of 2140 patients with acute coronary syndrome, cardiac troponin I concentrations were measured in 1776 patients at 4 and 12 months following the index event. Patients were stratified into three groups according to the troponin concentration at 4 months using the 99th centile (women>16 ng/L, men>34 ng/L) and median concentration of those within the reference range. The primary outcome was cardiovascular death. Results: Troponin concentrations at 4 months were measurable in 99.0% (1759/1776) of patients (67±12 years, 72% male), and were ≤5 ng/L (median) and >99th centile in 44.8% (795) and 9.3% (166), respectively. There were 202 (11.4%) cardiovascular deaths after a median of 4.8 years. After adjusting for the Global Registry of Acute Coronary Events score, troponin remained an independent predictor of cardiovascular death (HR 1.4, 95% CI 1.3 to 1.5 per doubling) with the highest risk observed in those with increasing concentrations at 12 months. Patients with 4-month troponin concentrations >99th centile were at increased risk of cardiovascular death compared with those ≤5 ng/L (29.5% (49/166) vs 4.3% (34/795); adjusted HR 4.9, 95% CI 3.8 to 23.7). Conclusions: Convalescent cardiac troponin concentrations predict long-term cardiovascular death following acute coronary syndrome. Recognising this risk by monitoring troponin may improve targeting of therapeutic interventions

    Improved Interpretation of Mercury Intrusion and Soil Water Retention Percolation Characteristics by Inverse Modelling and Void Cluster Analysis

    Get PDF
    This work addresses two continuing fallacies in the interpretation of percolation characteristics of porous solids. The first is that the first derivative (slope) of the intrusion characteristic of the non-wetting fluid or drainage characteristic of the wetting fluid corresponds to the void size distribution, and the second is that the sizes of all voids can be measured. The fallacies are illustrated with the aid of the PoreXpert® inversemodelling package.Anewvoid analysis method is then described, which is an add-on to the inverse modelling package and addresses the second fallacy. It is applied to three widely contrasting and challenging porous media. The first comprises two fine-grain graphites for use in the next-generation nuclear reactors. Their larger void sizes were measured by mercury intrusion, and the smallest by using a grand canonical Monte Carlo interpretation of surface area measurement down to nanometre scale. The second application is to the mercury intrusion of a series of mixtures of ground calcium carbonate with powdered microporous calcium carbonate known as functionalised calcium carbonate (FCC). The third is the water retention/drainage characteristic of a soil sample which undergoes naturally occurring hydrophilic/hydrophobic transitions. The first-derivative approximation is shown to be reasonable in the interpretation of the mercury intrusion porosimetry of the two graphites, which differ only at low mercury intrusion pressures, but false for FCC and the transiently hydrophobic soil. The findings are supported by other experimental characterisations, in particular electron and atomic force microscopy

    Reduced P300 amplitude during retrieval on a spatial working memory task in a community sample of adolescents who report psychotic symptoms.

    Get PDF
    BACKGROUND: Deficits in working memory are widely reported in schizophrenia and are considered a trait marker for the disorder. Event-related potentials (ERPs) and imaging data suggest that these differences in working memory performance may be due to aberrant functioning in the prefrontal and parietal cortices. Research suggests that many of the same risk factors for schizophrenia are shared with individuals from the general population who report psychotic symptoms. METHODS: Forty-two participants (age range 11--13 years) were divided into those who reported psychotic symptoms (N = 17) and those who reported no psychotic symptoms, i.e. the control group (N = 25). Behavioural differences in accuracy and reaction time were explored between the groups as well as electrophysiological correlates of working memory using a Spatial Working Memory Task, which was a variant of the Sternberg paradigm. Specifically, differences in the P300 component were explored across load level (low load and high load), location (positive probe i.e. in the same location as shown in the study stimulus and negative probe i.e. in a different location to the study stimulus) and between groups for the overall P300 timeframe. The effect of load was also explored at early and late timeframes of the P300 component (250-430 ms and 430-750 ms respectively). RESULTS: No between-group differences in the behavioural data were observed. Reduced amplitude of the P300 component was observed in the psychotic symptoms group relative to the control group at posterior electrode sites. Amplitude of the P300 component was reduced at high load for the late P300 timeframe at electrode sites Pz and POz. CONCLUSIONS: These results identify neural correlates of neurocognitive dysfunction associated with population level psychotic symptoms and provide insights into ERP abnormalities associated with the extended psychosis phenotype

    Germline MBD4-deficiency causes a multi-tumor predisposition syndrome

    Get PDF
    We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5′-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management
    corecore