39 research outputs found

    Modelling the relationship between liquid water content and cloud droplet number concentration observed in low clouds in the summer Arctic and its radiative effects

    Get PDF
    Low clouds persist in the summer Arctic with important consequences for the radiation budget. In this study, we simulate the linear relationship between liquid water content (LWC) and cloud droplet number concentration (CDNC) observed during an aircraft campaign based out of Resolute Bay, Canada, conducted as part of the Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments study in July 2014. Using a single-column model, we find that autoconversion can explain the observed linear relationship between LWC and CDNC. Of the three autoconversion schemes we examined, the scheme using continuous drizzle (Khairoutdinov and Kogan, 2000) appears to best reproduce the observed linearity in the tenuous cloud regime (Mauritsen et al., 2011), while a scheme with a threshold for rain (Liu and Daum, 2004) best reproduces the linearity at higher CDNC. An offline version of the radiative transfer model used in the Canadian Atmospheric Model version 4.3 is used to compare the radiative effects of the modelled and observed clouds. We find that there is no significant difference in the upward longwave cloud radiative effect at the top of the atmosphere from the three autoconversion schemes (p=0.05) but that all three schemes differ at p=0.05 from the calculations based on observations. In contrast, the downward longwave and shortwave cloud radiative effect at the surface for the Wood (2005b) and Khairoutdinov and Kogan (2000) schemes do not differ significantly (p=0.05) from the observation-based radiative calculations, while the Liu and Daum (2004) scheme differs significantly from the observation-based calculation for the downward shortwave but not the downward longwave fluxes.This research has been supported by the Natural Sciences and Engineering Research Council of Canada (Discovery Grants RGPIN-2014-05173 and RGPIN 155649) and the Marine Environmental Observation, Prediction and Response Network (MEOPAR), which is a federally funded Networks of Centres of Excellence (NCE) (EC1-RC-DAL).Peer ReviewedPostprint (published version

    Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements

    Get PDF
    Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by the transport of midlatitude air masses into the Arctic. In contrast, pre- cipitation and natural sources play the most important role during summer. Within the Arctic region sloping isentropes create a barrier to horizontal transport, known as the polar dome. The polar dome varies in space and time and exhibits a strong influence on the transport of air masses from mid- latitudes, enhancing transport during winter and inhibiting transport during summer. We analyzed aircraft-based trace gas measurements in the Arctic from two NETCARE airborne field campaigns (July 2014 and April 2015) with the Alfred Wegener Insti- tute Polar 6 aircraft, covering an area from Spitsbergen to Alaska (134 to 17◦ W and 68 to 83◦ N). Using these data we characterized the transport regimes of midlatitude air masses traveling to the high Arctic based on CO and CO2 mea- surements as well as kinematic 10 d back trajectories. We found that dynamical isolation of the high Arctic lower tro- posphere leads to gradients of chemical tracers reflecting dif- ferent local chemical lifetimes, sources, and sinks. In par- ticular, gradients of CO and CO2 allowed for a trace-gas- based definition of the polar dome boundary for the two mea- surement periods, which showed pronounced seasonal differences. Rather than a sharp boundary, we derived a transi- tion zone from both campaigns. In July 2014 the polar dome boundary was at 73.5◦ N latitude and 299–303.5 K potential temperature. During April 2015 the polar dome boundary was on average located at 66–68.5◦ N and 283.5–287.5 K. Tracer–tracer scatter plots confirm different air mass prop- erties inside and outside the polar dome in both spring and summer. Further, we explored the processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the springtime polar dome mainly experienced diabatic cooling while traveling over cold sur- faces. In contrast, air masses in the summertime polar dome were diabatically heated due to insolation. During both sea- sons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above through ra- diative cooling. Ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a north- ward motion. Air masses inside and outside the polar dome were also distinguished by different chemical compositions of both trace gases and aerosol particles. We found that the fraction of amine-containing particles, originating from Arc- tic marine biogenic sources, is enhanced inside the polar dome. In contrast, concentrations of refractory black carbon are highest outside the polar dome, indicating remote pollu- tion sources. Synoptic-scale weather systems frequently disturb the transport barrier formed by the polar dome and foster ex- change between air masses from midlatitudes and polar re- gions. During the second phase of the NETCARE 2014 measurements a pronounced low-pressure system south of Resolute Bay brought inflow from southern latitudes, which pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 to 84.9 ± 4.7 ppbv between these two regimes. At the same time CO2 mix- ing ratios significantly decreased from 398.16 ± 1.01 to 393.81 ± 2.25 ppmv. Our results demonstrate the utility of applying a tracer-based diagnostic to determine the polar dome boundary for interpreting observations of atmospheric composition in the context of transport history

    Trans-Pacific Transport of Saharan Dust to Western North America: A Case Study

    Get PDF
    The first documented case of long range transport of Saharan dust over a pathway spanning Asia and the Pacific to Western North America is described. Crustal material generated by North African dust storms during the period 28 February - 3 March 2005 reached western Canada on 13-14 March 2005 and was observed by lidar and sunphotometer in the Vancouver region and by high altitude aerosol instrumentation at Whistler Peak. Global chemical models (GEOS-CHEM and NRL NAAPS) confirm the transport pathway and suggest source attribution was simplified in this case by the distinct, and somewhat unusual, lack of dust activity over Eurasia (Gobi and Takla Makan deserts) at this time. Over western North America, the dust layer, although subsiding close to the boundary layer, did not appear to contribute to boundary layer particulate matter concentrations. Furthermore, sunphotometer observations (and associated inversion products) suggest that the dust layer had only subtle optical impact (Aerosol Optical Thickness (Tau(sub a500)) and Angstrom exponent (Alpha(sub 440-870) were 0.1 and 1.2 respectively) and was dominated by fine particulate matter (modes in aerodynamic diameter at 0.3 and 2.5microns). High Altitude observations at Whistler BC, confirm the crustal origin of the layer (rich in Ca(++) ions) and the bi-modal size distribution. Although a weak event compared to the Asian Trans-Pacific dust events of 1998 and 2001, this novel case highlights the possibility that Saharan sources may contribute episodically to the aerosol burden in western North America

    Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition

    Get PDF
    The sources, chemical transformations and re- moval mechanisms of aerosol transported to the Arctic are key factors that control Arctic aerosol–climate interactions. Our understanding of sources and processes is limited by a lack of vertically resolved observations in remote Arctic re- gions. We present vertically resolved observations of trace gases and aerosol composition in High Arctic springtime, made largely north of 80◦ N, during the NETCARE cam- paign. Trace gas gradients observed on these flights defined the polar dome as north of 66–68◦ 30′ N and below poten- tial temperatures of 283.5–287.5 K. In the polar dome, we observe evidence for vertically varying source regions and chemical processing. These vertical changes in sources and chemistry lead to systematic variation in aerosol composition as a function of potential temperature. We show evidence for sources of aerosol with higher organic aerosol (OA), ammo- nium and refractory black carbon (rBC) content in the upper polar dome. Based on FLEXPART-ECMWF calculations, air masses sampled at all levels inside the polar dome (i.e., po- tential temperature 10 days) in the Arc- tic, while air masses in the upper polar dome had entered the Arctic more recently. Variations in aerosol composition were closely related to transport history. In the lower polar dome, the measured sub-micron aerosol mass was dominated by sulfate (mean 74 %), with lower contributions from rBC (1 %), ammonium (4 %) and OA (20 %). At higher altitudes and higher potential temperatures, OA, ammonium and rBC contributed 42 %, 8 % and 2 % of aerosol mass, respectively. A qualitative indication for the presence of sea salt showed that sodium chloride contributed to sub-micron aerosol in the lower polar dome, but was not detectable in the upper po- lar dome. Our observations highlight the differences in Arc- tic aerosol chemistry observed at surface-based sites and the aerosol transported throughout the depth of the Arctic tropo- sphere in spring

    High Arctic aircraft measurements characterising black carbon vertical variability in spring and summer

    Get PDF
    The vertical distribution of black carbon (BC) par- ticles in the Arctic atmosphere is one of the key parameters controlling their radiative forcing and thus role in Arctic cli- mate change. This work investigates the presence and prop- erties of these light-absorbing aerosols over the High Cana- dian Arctic ( > 70 degree N). Airborne campaigns were performed as part of the NETCARE project (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) and provided insights into the variability of the vertical distributions of BC particles in summer 2014 and spring 2015. The observation periods covered evolutions of cyclonic disturbances at the polar front, which favoured the transport of air pollution into the High Canadian Arctic, as otherwise this boundary between the air masses largely im- pedes entrainment of pollution from lower latitudes. A total of 48 vertical profiles of refractory BC (rBC) mass concen- tration and particle size, extending from 0.1 to 5.5 km altitude were obtained with a Single-Particle Soot Photometer (SP2). Generally, the rBC mass concentration decreased from spring to summer by a factor of 10. Such depletion was as- sociated with a decrease in the mean rBC particle diameter, from approximately 200 to 130 nm at low altitude. Due to the very low number fraction, rBC particles did not substantially contribute to the total aerosol population in summer. The analysis of profiles with potential temperature as ver- tical coordinate revealed characteristic variability patterns within specific levels of the cold and stably stratified, dome- like, atmosphere over the polar region. The associated his- tory of transport trajectories into each of these levels showed that the variability was induced by changing rates and effi- ciencies of rBC import. Generally, the source areas affecting the polar dome extended southward with increasing potential temperature (i.e. altitude) level in the dome. While the lower dome was mostly only influenced by low-level transport from sources within the cold central and marginal Arctic, for the mid-dome and upper dome during spring it was found that a cold air outbreak over eastern Europe caused intensified northward transport of air from a corridor over western Rus- sia to central Asia. This sector was affected by emissions from gas flaring, industrial activity and wildfires. The devel- opment of transport caused rBC concentrations in the second lowest level to gradually increase from 32 to 49 ng

    Size-resolved mixing state of black carbon in the Canadian high Arctic and implications for simulated direct radiative effect

    Get PDF
    Transport of anthropogenic aerosol into the Arc- tic in the spring months has the potential to affect regional climate; however, modeling estimates of the aerosol direct radiative effect (DRE) are sensitive to uncertainties in the mixing state of black carbon (BC). A common approach in previous modeling studies is to assume an entirely exter- nal mixture (all primarily scattering species are in separate particles from BC) or internal mixture (all primarily scat- tering species are mixed in the same particles as BC). To provide constraints on the size-resolved mixing state of BC, we use airborne single-particle soot photometer (SP2) and ultrahigh-sensitivity aerosol spectrometer (UHSAS) mea- surements from the Alfred Wegener Institute (AWI) Polar 6 flights from the NETCARE/PAMARCMIP2015 campaign to estimate coating thickness as a function of refractory BC (rBC) core diameter and the fraction of particles contain- ing rBC in the springtime Canadian high Arctic. For rBC core diameters in the range of 140 to 220 nm, we find av- erage coating thicknesses of approximately 45 to 40 nm, re- spectively, resulting in ratios of total particle diameter to rBC core diameters ranging from 1.6 to 1.4. For total par- ticle diameters ranging from 175 to 730 nm, rBC-containing particle number fractions range from 16% to 3%, respec- tively. We combine the observed mixing-state constraints with simulated size-resolved aerosol mass and number dis- tributions from GEOS-Chem–TOMAS to estimate the DRE with observed bounds on mixing state as opposed to assuming an entirely external or internal mixture. We find that the pan-Arctic average springtime DRE ranges fro
    corecore