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S1 Dimension reduction methods1

S1.1 PMF description2

Given a column matrix of row vectors (i.e., the sample spectra), X, the forward model is expressed as3

X = GF + E. G and F are matrices comprising component strengths and profiles, respectively; E is4

the residual matrix. The Q (or χ2) value to be minimized is defined by the canonical objective function5

Q =
∑
i

∑
j e

2
ij/s

2
ij , where eij are the residuals (elements of E) and sij define the weighting for the fit.6

These weights are derived from mechanistic estimates of the measurement error (Polissar et al., 1998) for7

both FTIR (Russell et al., 2009b) and ACSM (Ng et al., 2011). The goodness-of-fit metric (Q) is evaluated8

against a theoretical or expected value, which is approximated by the degrees of freedom in the system:9

Qexpected ≈ ν = m ·n− p(m+n) (Paatero et al., 2002). For data sets with large number of n variables (e.g.,10

FTIR spectra) or large number of m samples (e.g., ACSM), is essentially the number of elements in the data11

matrix, X (Ulbrich et al., 2009). The assumption in this model is that X is composed of a signal and noise,12

and we wish to represent the signal with factor components and allow the residual term to carry the noise.13

A commonly prescribed criterion for selecting a solution is that Q/Qexpected ≈ 1, according to the premise14

that S represents the magnitude of noise component, and factor components are fitting only the true signal15

such that E ≈ S.16
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The four-factor FTIR solution discussed has a Q/Qexpected value of 0.8 and is chosen as it satisfies the17

criteria outlined by Russell et al. (2009b): the factor strengths are not strongly correlated (|r| < 0.5) and18

the reconstructed X matrix adequately reproduces the original spectra (Explained Variation > 95%). Factor19

components are presumably a mixture of compounds; source classes are inferred for each of these mixtures20

by examining correlations with elemental tracers and confirmed by comparison to factor spectra obtained21

from previous campaigns (Russell et al., 2011). For ACSM, we choose a two-factor solution under a modified22

S matrix (discussed in Section S1.2). The PMF analysis for both FTIR and ACSM is performed using the23

PMF2 algorithm by Paatero and Tapper (1994). Exploration of parameters and evaluation of solutions are24

performed using a set of scripts written in R (R Development Core Team, 2012).25

S1.2 Augmentation of the ACSM PMF standard deviation matrix26

If x = the measured signal (OM), u the true signal, and ε represents the instrument noise, a scalar repre-27

sentation of their relationship can be written as28

x = u+ ε . (S1)

Var(ε) is estimated from measurement errors compounded for ion counts converted to analog signals (Ng29

et al., 2011). The PMF statement is equivalent to Equation (S1) except that ε represents the residuals30

(fitting error), which is assumed to be approximately equal to the measurement error in magnitude for31

the purpose of finding a suitable solution (Paatero and Tapper, 1994). Upon an initial iteration of PMF32

decomposition, we find that the Q/Qexpected does not converge to unity even for a large number of factors33

(out to 12), suggesting that S may be underestimated for this data set (Q/Qexpected is approximately 334

for a four-factor solution). This underestimation leads to solutions in which some of the factors appear35

to representing additional noise rather than an underlying component of the true signal. To remedy this36

situation, we select a solution in which the model is purposely over-fitting the data such that the factors37

with the lowest loadings are fitting the noise. These components are taken as estimates of the unaccounted38

measurement error and append this to the original S matrix. In formula, this is expressed as x = u+ δ + ε.39

In this solution, a factor component, δ, contributes little to explaining the systematic variation in x (median40

correlation with any m/z signal ∼0.1). Therefore, the measurement error matrix is augmented by assuming41

that Var(δ) = δ (limit of Poisson statistics) and deriving a new estimate of the standard deviation matrix.42

In terms of the matrix formulation of PMF, the first decomposition yields X = (GF )u + (GF )δ +E; the43

standard deviation matrix S is augmented as S(new) =
√

(GF )
2
δ + S2. This reduces the Q-value from 3.944

to 1.7 for a two-factor solution, but more importantly, eliminates the generation of solutions in which a δ45

term or terms are included (i.e., components appear to represent true signals). Residuals (eij) normalized46

by the corresponding standard deviation are shown in Figure (S1).47

S1.3 Comparison of ACSM spectra classification analysis by LDA and k-nn48

algorithms49

Linear discriminant analysis (LDA) is a method for determining linear decision boundaries (hyperplanes) for50

multidimensional, continuous variables, to delineate regions of observations belonging to a particular class51

or category. The k-nearest neighbor (k-nn) method assigns categories to multivariate observations based on52

proximity (the Euclidean distance metric is most commonly used) to elements in the training set. Details of53

these statistical learning methods are described by (Hastie et al., 2009).54

As described in Section 2, ACSM mass fragment spectra are compared to a training set of unit mass55

resolution mass spectra from AMS (Ulbrich et al., 2009, 2012). As a projection of the measurements in the56

space of normalized mass fragment concentration pairs (including f43, f44, f57, f60; each plotted against f44 is57

shown in Figure 7) indicates that a segregation of the training set naturally lends itself to a partitioning of the58

composition space such a method as linear discriminant analysis (LDA), we can obtain a first-order estimate59

of the types of samples present. Given the number of assumptions required for LDA (equal covariances,60

multi-normality) that are difficult to assess for the small number of samples in the training set, k-nearest61
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neighbor (k-nn) classification is also used to provide another method of classification subject to different a set62

of constraint criteria. We use a reduced set for the classification based on our understanding that m/z 43, 44,63

57, and 60 are the important mass fragments that differentiate among OOA, HOA, and BBOA aerosol (Ng64

et al., 2011) and avoid using the full spectrum where collinearity may inflate the errors in the classification.65

We apply a square-root transformation of the feature vector so that normal distributions are approximated66

by the data, and scale each vector by its 2-norm distance. Both LDA and k-nn classifications are performed67

in R (R Development Core Team, 2012) using the MASS and class libraries, respectively. Figure S2 shows68

the similarities in classified fractions according to LDA and k-nn analysis.69

S1.4 Using classification analysis to approximate ensemble mixture proportions70

Let us assume the existence of two end-member states, M1 and M2. x represents the proportion of component71

M1 in a sample, obtained from feature vector v of an arbitrary number of dimensions using a mapping72

represented by gM1
. If we allow M1 and M2 to denote categories with approximately similar composition73

to their respective end members, we can also define an indicator function IM1
(v):74

IM1
(v) =

{
1 if v ∈M1

0 if v /∈M1

.

According to this formulation, the result of classification analysis is to alternatively represent the feature75

vector for each sample with a discrete (binary) value, x′, rather than a continuous variable, x:76

x = gM1
(v)

x′ = IM1
(v) .

The expected value of X ′ (a Bernoulli random variable) can be shown to approximate the ensemble average77

of X (a continuous random variable) according to the indicator function. That is to say that we approximate78

E(X) with E(X ′) by replacing x with x′ for each sample i:79

1

n

n∑
i

gM1
(vi) ≈

1

n

n∑
i

IM1
(vi) =

nM1

n
, (S2)

where n is the total number of samples and nM1
is the number of samples classified into category M1. The80

right-hand side of Equation (S2) follows from the fact that the estimator for E(X ′) is p̂ = nM1
/n. This81

concept can be extended to extended to N exhaustive end-member states by specification of complementary82

indicator functions such that83

N∑
k=1

IMk
(vi) = 1 ∀ i = {1, . . . , n} .

To fix ideas in a simple, one-dimensional case with two end members, let x = v and gM1
be the identity84

function. We define the indicator function in terms of a threshold value, φM1
, such that IM1

(x) = Φ(−x+85

φM1
). Φ is the Heaviside unit step function; φM1

is the threshold below which x is categorized asM1 (and86

above asM2). The probabiliy distribution of the Bernoulli random variable, X ′, is related to the continuous87

distribution of the original variable such that88

E(X ′) = Pr(X ′ = 1) = Pr(X ∈M1) = Pr(X ≤ φM1
)

since the empirical cumulative distribution function (c.d.f.) of X also has the form Pr(X ≤ φ) = Φ(−x+ φ)89

where φ is any value in the domain of X, which is [0,1]. Markov’s inequality (Wasserman, 2010) can90

approximately constrain the complementary c.d.f. for a continuous distribution from its expected value.91

Since in our example the c.d.f. is equal to E(X ′), this inequality can give us some indication of how E(X)92

and E(X ′) are related in this specific case. If we let ∆ =
∣∣E(X ′)− E(X)

∣∣, then ∆ ≤ E(X ′)
[
1 + φM1

]
−φM1

,93
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and we can bound the magnitude of the approximation (between E(X) and E(X ′)) for choice of φM1
and94

estimated values of E(X ′) (and also minimize ∆ with respect to φM1
). While many classification algorithms95

preclude definition of a simple threshold and each estimation method may require different prepration of96

feature vectors to satisfy required assumptions, this illustration shows a very simple case in which discrete97

categorizations can be used to approximate mixture proportions. In the more general case, if we define98

d = IM1
(v)−gM1

(v), then ∆ = |E(D)| (from Equation S2). Therefore, we expect that the bias in estimation99

between the two methods would depend on the distribution of D.100

It should be noted that the correctness of the approximation strongly depends on the classification101

scheme which defines the indicator functions. Therefore, the solution of 88/12% OOA/HOA (Section S1.5)102

rather than 60/40% OOA-1/OOA-2 (Section 3.2) apportionment cannot be ruled out, especially if the103

feature vectors or classification algorithm cannot fully discriminate between HOA and OOA-2 if they are104

approximately collinear along a continuum of oxidation states. But as stated in Section 3.2, this partitioning105

affects the estimation of the more and less oxygenated fractions, but their respective trends are robust with106

respect to either interpretation. Therefore, the source association of the components based on the diurnal107

variations showed in Figure 8 remains unchanged.108

S1.5 Additional methods for ACSM spectra analysis: SVD and regression anal-109

ysis (CMB)110

Singular Value Decomposition (SVD) on the sample matrix X (which does not account for the measure-111

ment error matrix, S) indicates that two components explain approximately 80% of the variation in the112

measurements, consistent with an Explained Variation of 80% from PMF analysis for a two-component113

solution.114

Regression analysis, often referred to as a Chemical Mass Balance (CMB) approach (Chow and Watson,115

2002; Ng et al., 2011), to component apportionment is also used but yielded results not consistent with the116

domain delineated by Figure 7 because of the large collinearity among regressands. Approximate apportion-117

ment to HOA and OOA (HOAest and OOAest, respectively) from unit-mass resolution AMS measurements118

using OM-equivalent concentrations of mass fragments 44 and 57 (C44 and C57, respectively) is suggested119

by Ng et al. (2011):120 (
HOAest

OOAest

)
=

(
0 b a · b
d 0 c

) 1
C57

C44

 . (S3)

Using Equation (S3) with coefficients {a = 0.095, b = 15.2, c = 6.92, d = 0.07} estimated from median121

values of various campaigns (Ng et al., 2011) provides an alternate method of partitioning the OM into122

more and less oxygenated fractions. The HOA and OOA apportioned using this method correlate well123

with OOA-2 (r=0.86) and OOA-1 (r=0.77), respectively. Therefore, conclusions dependent on the relative124

variation of the less oxygenated and more oxygenated components in time are robust with respect to either125

interpretation. However, the regression coefficients β={intercept,slope} are {-0.25,0.46} for HOAest on OOA-126

2, and {-0.5,1.8} for OOAest on OOA-1. This alternative interpretation would suggest that the transported127

fraction to OM may be as high as 88% – rather than 60% as suggested using the OOA-1 and OOA-2 PMF128

solution – based on the justified assumption that the majority of the more oxygenated fraction of OM is129

due to long-range transport (Section 3.3). However, more weight is placed on the OOA-1 and OOA-2 PMF130

solution as it is derived for measurements at the Tijuana site specifically, and the solution is supported by131

the chemical composition space delineated by Figure 7 and classification analysis discussed in section S1.3.132

S2 Apportionment of OM133

S2.1 Synthesis of FTIR and ACSM PMF solutions134

As the FTIR and ACSM provides complementary information regarding the organic fraction of ambient135

aerosols, we wish to harmonize our interpretation of our measurements by combining the information re-136
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trieved from both instruments. One method is to combine measurements from both instruments into a137

single data matrix for multivariate PMF analysis, which poses many challenges. For instance, the num-138

ber of variables provided by each instrument are different; appropriate downweighting must be applied to139

reduce redundancies for each instrument, and for one set of measurement with respect to the other such140

that one is not favored more heavily in the solution. These issues are effectively handled through the ad-141

justment of the standard deviation matrix; a bottom-up approach to specification of this matrix, including142

the measurement-uncertainty component, requires absolute calibration such that they are comparable across143

instruments. Slowik et al. (2010) combined measurements from an AMS and PTR-MS to find covarying144

mass-fragments from PMF analysis, and iteratively adjusted the elements of the standard deviation matrix145

(collectively by instrument) with a single scaling factor to obtain empirical weightings such that mass frag-146

ments from both instruments were well represented and reproduced by the solutions. In this way, Slowik147

et al. (2010) retained relative weights (due to measurement uncertainties) for each instrument, but adjusted148

overall according to their information content with respect to the other instrument. Combining absorbance149

and mass fragment spectra for PMF analysis could possibly be approched in this way to ensure that solu-150

tions represent apportionment based on variation, rather than (possibly miscalibrated) variance. However,151

in this work, we adopt a naive approach which provides an interpretation of the two measurements after152

PMF decomposition has been applied independently.153

Taking a rather extreme perspective, we assume FTIR PMF components retain information regarding154

source class (Russell et al., 2011) and ACSM PMF components indicate information regarding aerosol age155

(Jimenez et al., 2009). From this analysis we attempt to approximate age of OM attributed to each source156

class (from which notions of local and remote origins emerge). Let OMA and OMF represent OM concentra-157

tions measured by ACSM and FTIR, respectively, and OMC represent the OM concentration measured by158

both techniques (for a single sample). Disregarding non-systematic disturbances to each set of measurements159

(PMF presumably retains the signal to factor components and apportions these disturbances to the residual160

term), it is assumed that the primary differences among these metrics of OM are the unmeasured compounds161

or organic aerosol fractions due to reasons described in Section 3.2. α is a vector which indicates the frac-162

tion of OM attributed to components A = {OOA-1,OOA-2} from ACSM PMF analysis, or components163

F = {FF1,FF2,BB} from FTIR PMF analysis (as denoted by subscripts). The Marine factor is excluded164

from this portion of the analysis as we expect marine organic OM associated with non-refractory sea salt165

not to be measured by the ACSM (Section 3.2). We additionally define a vector of all ones, 1m, where m166

indicates the number of elements (often defined here by the cardinality of a set, |·|, or number of samples,167

n). Using these definitions, OMC can be defined in terms of the fractional sum of components for each168

instrument: OMC = OMAα
T
A1|A| = OMFα

T
F1|F|. In this context, 1m is introduced as a postfix operator169

which sums elements of a vector (or rows or columns of matrices, depending on orientation). In our present170

specification, αTA1|A| and αTF1|F| are not required to equal unity, as the marine component for FTIR has171

been excluded from αF , for instance. We can eliminate the explicit references to OM by redefining αA and172

αF with scaling factors OMA/OMC and OMF /OMC , respectively, such that173

1 = αTA1|A| = αTF1|F| (S4)

The proportion of OMC attributed to any component from one measurement can be described with respect174

to contributions from the other, which follows from Equation (S4):175

αA = αAα
T
F1|F| (S5)

αF = αFα
T
A1|A| .

The two outer products, αAα
T
F and αFα

T
A, define the fraction of FTIR components associated with ACSM176

components, and vice versa. For instance, the former case (Equation S5) is also written,177

(
αOOA-1

αOOA-2

)
=

(
αOOA-1αFF1 αOOA-1αFF2 αOOA-1αBB

αOOA-2αFF1 αOOA-2αFF2 αOOA-2αBB

)1
1
1

 , (S6)

5



where the first matrix on the right-hand side is αAα
T
F . Campaign-averaged contributions for OMCαAα

T
F are178

shown in Figure S3. Averaged quantities of αAα
T
F and αFα

T
A are essentially a measure of the uncentered179

covariance scaled by individual measurements of OM. To illustrate this interpretation, let us define two180

matrices, AA and AF for ACSM and FTIR measurements, respectively, which contain all rescaled values of181

α for the campaign:182

AA =
(
αA,1 αA,2 . . . αA,n

)
=

(
αTOOA-1

αTOOA-2

)
and AF =

(
αF,1 αF,2 . . . αF,n

)
=

αTFF1

αTFF2

αTBB

 .183

Each matrix of A is defined in two equivalent representations, either as 1) vectors containing component184

fractions, αA,i or αF,i – with second indices indicating the sample number – or 2) vectors containing OM185

mass fractions for each PMF component in A or F , with number of dimensions equal to the number of186

measurements, n, in the campaign. We adopt the second notation for illustrating similarities to the array187

notation of αAα
T
F displayed in Equation (S6). We can restate the equality in OM reconstruction for each188

sample (Equation S4):189

1n = AT
A1|A| = AT

F1|F| ,

and define their averages:190

1

n
AA1n =

1

n
AAA

T
F1|F| (S7)

1

n
AF1n =

1

n
AFA

T
A1|A| . (S8)

A product of AA and AF will yield uncentered covariances across components (scaled by the number of191

observations, n):192

1

n
AAA

T
F =

1

n

(
αTOOA-1αFF1 αTOOA-1αFF2 αTOOA-1αBB

αTOOA-2αFF1 αTOOA-2αFF2 αTOOA-2αBB

)
.

Russell et al. (2009a) explored linear relationships between fragments and bonds measured by AMS193

and FTIR, respectively, through ordinary regression. We consider this approach for explaining variations194

in α s in A through linear combinations of α s in F . We extend individual statements of regression to195

a multivariate, multiple regression expression, AA = βTAF + E, where E is the residual matrix. The196

expected value of AA can be written as ÂA = AAH
T . A possible solution for the regression coefficients197

are β̂ =
(
AFA

T
F

)−1
AFA

T
A, and the hat (projection) matrix can be defined as H = AT

F β̂
(
AT
A

)−1
=198

AT
F

(
AFA

T
F

)−1
AF . Of course, a naive solution is proposed for illustration in this case, but non-negativity199

should be considered in the actual specification of β̂ and H. To summarize the two approaches based on200

Equation S8 and Russell et al. (2009a), we can postfix AA =
(αT

OOA-1

α
T
OOA-2

)
with either 1

nAF1|F| to get
( α̂OOA-1

α̂OOA-2

)
,201

or with HT to get
( α̂T

OOA-1

α̂
T
OOA-2

)
. The former statement makes a remark regarding the marginal expectation202

E(X) from the joint expectation E(X,Y ), and the latter, the conditional expectation E(X|Y = y), where X203

and Y are used to denote any pair of covariates in standard scalar notation. The relationship between AA204

and AF are embodied in AAA
T
F in the former case, and β̂ (matrix of regression coefficients) for the latter205

case.206

Since the separation between FTIR FF1 and FF2 are thought to be in degree of oxygenation (Russell207

et al., 2011), the expectation is that FF1 and FF2 are less and more aged, respectively, which is not supported208

by this analysis if OOA-1 and OOA-2 are strictly interpreted as indicators of age in Tijuana. It is therefore209

possible that there are other factors which lead to the separation of ACSM OM into OOA-1 and OOA-210

2, and FTIR OM into FF1 and FF2 at this location. For instance, there may be aspects of molecular211

composition that are similar (from the perspective of the ACSM mass spectra) across different source types,212

and therefore an overlap in functional groups apportioned to OOA-1 and OOA-2. Using the same method213
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(Equation ??) but letting αF represent FTIR OFG fractions rather than PMF factor fractions, we can214

estimate OFG contributions (sans marine OM) to the different ACSM PMF factors and provide support for215

this interpretation (Figure S4). As discussed in Section 3.2, another interpretation (not mutually exclusive216

with respect to the previous statement) is that some fraction of FF2 is associated with non-refractory mineral217

dust (Section 3.2). OM associated with this material is not believed to be sampled by ACSM. Regarding the218

separation of other components (e.g., BB) between OOA-1 and OOA-2 fractions, the coarse time resolution219

of the FTIR measurements may also affect the ability to resolve component contributions well (Henry, 2003).220

Liggio et al. (2010) apportioned HOA to primary (local) OM, and OOA to a combination of aged back-221

groumd OM and locally-produced SOA. In our case, we conclude that local production of SOA was small at222

our measurement site, based on estimates of diurnal increases in OM during photochemically active periods223

(approximately noon each day) and consistently high degree of oxygenation (Sections 3.2 and 3.3). With224

similar reasoning, we consider our less oxygenated aerosol (OOA-2) to local aerosol and more oxygenated225

(OOA-1) as aged. As a zeroth-order estimate, we disregard the separation in fossil fuel combustion OM226

by FTIR PMF into FF1 and FF2 and consider this as a single source component, and evaluate the local227

and regional contributions based on the degree of oxygenation of mass fragment spectra (Jimenez et al.,228

2009). In this case, 60% of the FF OM is associated with OOA-1 (50% if we disregard FF2 contribution to229

OM measured by FTIR in accordance with our previously stated hypothesis); this value may be considered230

a lower bound on the average contribution of anthropogenic combustion-related material transported to231

Tijuana (and oxygenated in the process) from regional sources (Section 3.3).232

S2.2 Mass fragment and VOC ratios233

S2.2.1 Lag-time correlations234

The hourly lag time correlations between ACSM mass fragments and selected VOCs from PTR-MS mea-235

surements, as discussed in Section 3.3, are shown in Figure S5.236

S2.2.2 Toluene-to-benzene ratios237

The toluene-to-benzene ratio, R[T/B], is used as a metric of age and a parameter by which oxygenated238

aerosol is fractioned into primary and secondary, and background OM (e.g., Liggio et al., 2010). While239

requirements for chemical specificity precludes apportionment using ACSM mass spectra, correlations of240

R[T/B] with O/C ratio, and OOA-1 and OOA-2 normalized by OM (Figure S6) suggests that constant and241

point-source emission assumption (Liggio et al., 2010) required for R[T/B] analysis are not likely to be valid.242

Despite the constant wind direction/ direction of origin of airmasses to Tijuana, it may be the case that243

that mixing of airmasses or the existence of multiple sources along the trajectory path leads to inconsistent244

proportions of toluene to benzene with which to measure airmass age.245

S3 Meteorological analysis246

Wind speed are estimated to vary between 2-5 m/s as calculated by the HYSPLIT model (Figure S7)247

streamlines with end-heights of 10, 50, and 100 m as described in Section 2. Using these values, The aged248

aerosol formed ≥10 hours prior is determined to lie beyond the Tijuana and San Diego regions (Figure S8).249
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Supplemental Tables303

Table S1: Summary of instruments used in this work. Further details are described in Section 2.
Analytical method Measurement Time resolution
FTIR PM1 total OM and organic functional group abundance 6-12 hours
ACSM Nonrefractory (NR) PM1 mass (SO4, NO3, NH4, Cl, Organics)

and organic molecular mass fragments
15-30 minutes

XRF PM1 elemental composition 6-12 hours
PTR-MS VOC compound concentrations from mass fragment analysis 10 minutes

SP2
Size-resolved black carbon number and mass concentrations
(only total number concentrations used in this work)

Single-particle

STXM-NEXAFS Individual Morphology and composition of carbonaceous particles Single-particle

Table S2: Organic aerosol spectra components or classes derived for FTIR absorbance spectra and ACSM
mass fragment spectra. Further details are described in Section 3 and text of this document.

Instrument Method
Components or classes (campaign average ± standard deviation,
or range in estimated value from multiple methods)

FTIR PMF FF1 (40±28%), FF2 (17±19%), BB (20±20%), Marine (23±24%)
FTIR Nonlinear regression hydroxyl (22±13%), alkane (44±9%), carboxylic acid (26±7%),

ketonic carbonyl (3±5%), primary amine (5±2%), and organic
nitrate (0.3±0.3%) functional groups

ACSM PMF OOA-1 (60±19%), OOA-2 (40±19%)
ACSM Linear regression OOA (88±19%), HOA(12±19%)
ACSM Classification OOA-1 (69-77%), OOA-2 (20-26%), BBOA (2-4%), HOA (1-2%)
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Supplemental Figures304
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Figure S1: Residuals normalized by corresponding standard deviation values (original in blue; revised in
red). Thick, horizontal lines indicate median values, boxes span interquartile range, and whiskers span 1.5
times the interquartile range. Black, horizontal lines are drawn at values of ±1.
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Figure S2: Feature vectors projected onto the space of the first two linear discriminants, and classified
fractions of sample spectra according to LDA and k-nn methods (from left to right).
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Figure S3: Proportion of FTIR PMF factors associated with ACSM PMF factors, estimated from Equation
(S6). Asterisk indicates component not included in OM sum.
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Equation (S6) with modifications described in Section S2.1.
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Figure S6: O/C ratio and PMF-factor fractions of OM as a function of Toluene-to-benzene ratio (R[T/B]).
Color indicates time of day: evening (blue), morning (pink), afternoon (green).
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Figure S7: Wind speeds estimated by HYSPLIT model at altitudes of 10, 100, and 500 m shown in vertical
panels from bottom to top, respectively.
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Figure S8: Transport times (blue) required for airmasses to reach Tijuana, estimated for fixed wind speeds of
2 and 5 m/s. Red dots from north to south represent Long Beach, CA, San Diego, CA, and Tijuana (Parque
Morelos), Mexico.
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