40 research outputs found

    Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydro Models

    Full text link
    We have performed detailed NLTE spectral synthesis modeling of 2 types of 1-D hydro models: the very highly parameterized deflagration model W7, and two delayed detonation models. We find that overall both models do about equally well at fitting well observed SNe Ia near to maximum light. However, the Si II 6150 feature of W7 is systematically too fast, whereas for the delayed detonation models it is also somewhat too fast, but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II 6150 line near maximum light and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydro model to fit the spectra of observed SNe Ia near maximum light.Comment: 29 pages, 14 figures, ApJ, in pres

    Analysis of the Flux and Polarization Spectra of the Type Ia Supernova SN 2001el: Exploring the Geometry of the High-velocity Ejecta

    Full text link
    SN 2001el is the first normal Type Ia supernova to show a strong, intrinsic polarization signal. In addition, during the epochs prior to maximum light, the CaII IR triplet absorption is seen distinctly and separately at both normal photospheric velocities and at very high velocities. The high-velocity triplet absorption is highly polarized, with a different polarization angle than the rest of the spectrum. The unique observation allows us to construct a relatively detailed picture of the layered geometrical structure of the supernova ejecta: in our interpretation, the ejecta layers near the photosphere (v \approx 10,000 km/s) obey a near axial symmetry, while a detached, high-velocity structure (v \approx 18,000-25,000 km/s) with high CaII line opacity deviates from the photospheric axisymmetry. By partially obscuring the underlying photosphere, the high-velocity structure causes a more incomplete cancellation of the polarization of the photospheric light, and so gives rise to the polarization peak and rotated polarization angle of the high-velocity IR triplet feature. In an effort to constrain the ejecta geometry, we develop a technique for calculating 3-D synthetic polarization spectra and use it to generate polarization profiles for several parameterized configurations. In particular, we examine the case where the inner ejecta layers are ellipsoidal and the outer, high-velocity structure is one of four possibilities: a spherical shell, an ellipsoidal shell, a clumped shell, or a toroid. The synthetic spectra rule out the spherical shell model, disfavor a toroid, and find a best fit with the clumped shell. We show further that different geometries can be more clearly discriminated if observations are obtained from several different lines of sight.Comment: 14 pages (emulateapj5) plus 18 figures, accepted by The Astrophysical Journa

    Detection of CO and Dust Emission in Near-Infrared Spectra of SN 1998S

    Get PDF
    Near-infrared spectra (0.95 -- 2.4 micron) of the peculiar Type IIn supernova 1998S in NGC 3877 from 95 to 355 days after maximum light are presented. K-band data taken at days 95 and 225 show the presence of the first overtone of CO emission near 2.3 micron, which is gone by day 355. An apparent extended blue wing on the CO profile in the day 95 spectrum could indicate a large CO expansion velocity (~2000 -- 3000 km/s). This is the third detection of infrared CO emission in nearly as many Type II supernovae studied, implying that molecule formation may be fairly common in Type II events, and that the early formation of molecules in SN 1987A may be typical rather than exceptional. Multi-peak hydrogen and helium lines suggest that SN 1998S is interacting with a circumstellar disk, and the fading of the red side of this profile with time is suggestive of dust formation in the ejecta, perhaps induced by CO cooling. Continuum emission that rises towards longer wavelengths (J -> K) is seen after day 225 with an estimated near-infrared luminosity >~ 10^40 erg/s. This may be related to the near-infrared excesses seen in a number of other supernovae. If this continuum is due to free-free emission, it requires an exceptionally shallow density profile. On the other hand, the shape of the continuum is well fit by a 1200 +- 150 K blackbody spectrum possibly due to thermal emission from dust. Interestingly, we observe a similar 1200 K blackbody-like, near-infrared continuum in SN 1997ab, another Type IIn supernova at an even later post-maximum epoch (day 1064+). A number of dust emission scenarios are discussed, and we conclude that the NIR dust continuum is likely powered by the interaction of SN 1998S with the circumstellar medium.Comment: 38 Pages, 12 Figures, Submitted to The Astronomical Journa

    Signatures of delayed detonation, asymmetry, and electron capture in the mid-infrared spectra of supernovae 2003hv and 2005df

    Get PDF
    We present mid-infrared (5.2-15.2 ÎŒm) spectra of the Type Ia supernovae (SNe Ia) 2003hv and 2005df observed with the Spitzer Space Telescope. These are the first observed mid-infrared spectra of thermonuclear supernovae, and show strong emission from fine-structure lines of Ni, Co, S, and Ar. The detection of Ni emission in SN 2005df 135 days after the explosion provides direct observational evidence of high-density nuclear burning forming a significant amount of stable Ni in a SN Ia. The SN 2005df Ar lines also exhibit a two-pronged emission profile, implying that the Ar emission deviates significantly from spherical symmetry. The spectrum of SN 2003hv also shows signs of asymmetry, exhibiting blueshifted [Co III], which matches the blueshift of [Fe II ] lines in nearly coeval near-infrared spectra. Finally, local thermodynamic equilibrium abundance estimates for the yield of radioactive ^(56)Ni give M^(56)Ni ≈ 0.5 M⊙, for SN 2003hv, but only M^(56)Ni ≈ 0.13-0.22 M⊙ for the apparently subluminous SN 2005df, supporting the notion that the luminosity of SNe Ia is primarily a function of the radioactive ^(56)Ni yield. The observed emission-line profiles in the SN 2005df spectrum indicate a chemically stratified ejecta structure, which matches the predictions of delayed detonation (DD) models, but is entirely incompatible with current three-dimensional deflagration models. Furthermore, the degree that this layering persists to the innermost regions of the supernova is difficult to explain even in a DD scenario, where the innermost ejecta are still the product of deflagration burning. Thus, while these results are roughly consistent with a delayed detonation, it is clear that a key piece of physics is still missing from our understanding of the earliest phases of SN Ia explosions

    Using Line Profiles to Test the Fraternity of Type Ia Supernovae at High and Low Redshifts

    Get PDF
    Using archival data of low-redshift (z < 0.01) Type Ia supernovae (SN Ia) and recent observations of high-redshift (0.16 < z <0.64; Matheson et al. 2005) SN Ia, we study the "uniformity'' of the spectroscopic properties of nearby and distant SN Ia. We find no difference in the measures we describe here. In this paper, we base our analysis solely on line-profile morphology, focusing on measurements of the velocity location of maximum absorption (vabs) and peak emission (vpeak). We find that the evolution of vabs and vpeak for our sample lines (Ca II 3945, Si II 6355, and S II 5454, 5640) is similar for both the low- and high-redshift samples. We find that vabs for the weak S II 5454, 5640 lines, and vpeak for S II 5454, can be used to identify fast-declining [dm15 > 1.7] SN Ia, which are also subluminous. In addition, we give the first direct evidence in two high-z SN Ia spectra of a double-absorption feature in Ca II 3945, an event also observed, though infrequently, in low-redshift SN Ia spectra (6/22 SN Ia in our local sample). We report for the first time the unambiguous and systematic intrinsic blueshift of peak emission of optical P-Cygni line profiles in Type Ia spectra, by as much as 8000 km/s. All the high-z SN Ia analyzed in this paper were discovered and followed up by the ESSENCE collaboration, and are now publicly available.Comment: 28 pages (emulateapj), 15 figures; accepted for publication in A

    Acute cardiometabolic effects of brief active breaks in sitting for patients with rheumatoid arthritis

    Get PDF
    Exercise is a treatment in rheumatoid arthritis, but participation in moderate-to-vigorous exercise is challenging for some patients. Light-intensity breaks in sitting could be a promising alternative. We compared the acute effects of active breaks in sitting with those of moderate-to-vigorous exercise on cardiometabolic risk markers in patients with rheumatoid arthritis. In a crossover fashion, 15 women with rheumatoid arthritis underwent three 8-h experimental conditions: prolonged sitting (SIT), 30-min bout of moderate-to-vigorous exercise followed by prolonged sitting (EX), and 3-min bouts of light-intensity walking every 30 min of sitting (BR). Postprandial glucose, insulin, c-peptide, triglycerides, cytokines, lipid classes/subclasses (lipidomics), and blood pressure responses were assessed. Muscle biopsies were collected following each session to assess targeted proteins/genes. Glucose [−28% in area under the curve (AUC), P = 0.036], insulin (−28% in AUC, P = 0.016), and c-peptide (−27% in AUC, P = 0.006) postprandial responses were attenuated in BR versus SIT, whereas only c-peptide was lower in EX versus SIT (−20% in AUC, P = 0.002). IL-1ÎČ decreased during BR, but increased during EX and SIT (P = 0.027 and P = 0.085, respectively). IL-1ra was increased during EX versus BR (P = 0.002). TNF-α concentrations decreased during BR versus EX (P = 0.022). EX, but not BR, reduced systolic blood pressure (P = 0.013). Lipidomic analysis showed that 7 of 36 lipid classes/subclasses were significantly different between conditions, with greater changes being observed in EX. No differences were observed for protein/gene expression. Brief active breaks in sitting can offset markers of cardiometabolic disturbance, which may be particularly useful for patients who may find it difficult to adhere to exercise. NEW & NOTEWORTHY Exercise is a treatment in rheumatoid arthritis but is challenging for some patients. Light-intensity breaks in sitting could be a promising alternative. Our findings show beneficial, but differential, cardiometabolic effects of active breaks in sitting and exercise in patients with rheumatoid arthritis. Breaks in sitting mainly improved glycemic and inflammatory markers, whereas exercise improved lipidomic and hypotensive responses. Breaks in sitting show promise in offsetting aspects of cardiometabolic disturbance associated with prolonged sitting in rheumatoid arthritis

    Comparative in situ analyses of cell wall matrix polysaccharide dynamics in developing rice and wheat grain

    Get PDF
    Cell wall polysaccharides of wheat and rice endosperm are an important source of dietary fibre. Monoclonal antibodies specific to cell wall polysaccharides were used to determine polysaccharide dynamics during the development of both wheat and rice grain. Wheat and rice grain present near synchronous developmental processes and significantly different endosperm cell wall compositions, allowing the localisation of these polysaccharides to be related to developmental changes. Arabinoxylan (AX) and mixed-linkage glucan (MLG) have analogous cellular locations in both species, with deposition of AX and MLG coinciding with the start of grain filling. A glucuronoxylan (GUX) epitope was detected in rice, but not wheat endosperm cell walls. Callose has been reported to be associated with the formation of cell wall outgrowths during endosperm cellularisation and xyloglucan is here shown to be a component of these anticlinal extensions, occurring transiently in both species. Pectic homogalacturonan (HG) was abundant in cell walls of maternal tissues of wheat and rice grain, but only detected in endosperm cell walls of rice in an unesterified HG form. A rhamnogalacturonan-I (RG-I) backbone epitope was observed to be temporally regulated in both species, detected in endosperm cell walls from 12 DAA in rice and 20 DAA in wheat grain. Detection of the LM5 galactan epitope showed a clear distinction between wheat and rice, being detected at the earliest stages of development in rice endosperm cell walls, but not detected in wheat endosperm cell walls, only in maternal tissues. In contrast, the LM6 arabinan epitope was detected in both species around 8 DAA and was transient in wheat grain, but persisted in rice until maturity

    Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    Get PDF
    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This dataset provides unique spectral time series down to 2000 Angstrom. Significant diversity is seen in the near maximum-light spectra (~ 2000--3500 Angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in uvw1/F250W are found to correlate with the B-band light-curve shape parameter dm15(B), but with much larger scatter relative to the correlation in the broad-band B band (e.g., ~0.4 mag versus ~0.2 mag for those with 0.8 < dm15 < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia such as SN 2005cf by ~0.9 mag and ~2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.Comment: 17 pages, 13 figures, accepted by Ap

    The role of mechanotransduction versus hypoxia during simulated orthodontic compressive strain—an in vitro study of human periodontal ligament fibroblasts

    Get PDF
    During orthodontic tooth movement (OTM) mechanical forces trigger pseudo-inflammatory, osteoclastogenic and remodelling processes in the periodontal ligament (PDL) that are mediated by PDL fibroblasts via the expression of various signalling molecules. Thus far, it is unknown whether these processes are mainly induced by mechanical cellular deformation (mechanotransduction) or by concomitant hypoxic conditions via the compression of periodontal blood vessels. Human primary PDL fibroblasts were randomly seeded in conventional six-well cell culture plates with O-2-impermeable polystyrene membranes and in special plates with gas-permeable membranes (Lumox (R), Sarstedt), enabling the experimental separation of mechanotransducive and hypoxic effects that occur concomitantly during OTM. To simulate physiological orthodontic compressive forces, PDL fibroblasts were stimulated mechanically at 2 g.cm(-2) for 48 h after 24 h of pre-incubation. We quantified the cell viability by MTT assay, gene expression by quantitative real-time polymerase chain reaction (RT-qPCR) and protein expression by western blot/enzyme-linked immunosorbent assays (ELISA). In addition, PDL-fibroblast-mediated osteoclastogenesis (TRAP(+) cells) was measured in a 72-h coculture with RAW264.7 cells. The expression of HIF-1 alpha, COX-2, PGE2, VEGF, COL1A2, collagen and ALPL, and the RANKL/OPG ratios at the mRNA/protein levels during PDL-fibroblast-mediated osteoclastogenesis were significantly elevated by mechanical loading irrespective of the oxygen supply, whereas hypoxic conditions had no significant additional effects. The cellular-molecular mediation of OTM by PDL fibroblasts via the expression of various signalling molecules is expected to be predominantly controlled by the application of force (mechanotransduction), whereas hypoxic effects seem to play only a minor role. In the context of OTM, the hypoxic marker HIF-1 alpha does not appear to be primarily stabilized by a reduced O-2 supply but is rather stabilised mechanically
    corecore