4,302 research outputs found

    Quantum black holes from null expansion operators

    Full text link
    Using a recently developed quantization of spherically symmetric gravity coupled to a scalar field, we give a construction of null expansion operators that allow a definition of general, fully dynamical quantum black holes. These operators capture the intuitive idea that classical black holes are defined by the presence of trapped surfaces, that is surfaces from which light cannot escape outward. They thus provide a mechanism for classifying quantum states of the system into those that describe quantum black holes and those that do not. We find that quantum horizons fluctuate, confirming long-held heuristic expectations. We also give explicit examples of quantum black hole states. The work sets a framework for addressing the puzzles of black hole physics in a fully quantized dynamical setting.Comment: 5 pages, version to appear in CQ

    Shuttle time and frequency transfer experiment

    Get PDF
    A proposed space shuttle experiment to demonstrate techniques for global high precision comparison of clocks and primary frequency standards is described. The experiment, using transmitted microwave and pulsed laser signals, compared a hydrogen maser clock onboard the space shuttle with a clock in a ground station in order to demonstrate time transfer with accuracies of 1 nsec or better and frequency comparison at the 10 to the -14th power accuracy level

    Circular Dichroism of Partially Purified Cytochrome P450 from Rabbit Liver Microsomes

    Get PDF
    The heme-related circular dichroic bands of solubilized cytochrome P450 from rabbit liver microsomes and some of its liganded derivatives were measured in the Soret region. All P450 derivatives exhibit negative circular dichroic bands in the region of the Soret absorption. The wavelengths of the dichroic bands and their ellipticities vary with ligand substitution and the oxidation state of the iron. The results are compared with CD-data from other hemoproteins and discussed with respect to stereochemical conclusions concerning the geometry and the physicochemical character of the vicinity of the heme group with regard to results obtained from other studies

    COMPTEL Observations of AGN at MeV-Energies

    Get PDF
    The COMPTEL experiment aboard CGRO, exploring the previously unknown sky at MeV-energies, has so far detected 10 Active Galactic Nuclei (AGN): 9 blazars and the radio galaxy Centaurus A. No Seyfert galaxy has been found yet. With these results COMPTEL has opened the field of extragalactic Gamma-ray astronomy in the MeV-band.Comment: 4 pages, 2 figures including 1 color plot, to appear in the Proceedings of the 3rd INTEGRAL Workshop "The Extreme Universe", held in Taormina, Italy, 14-18 September 199

    COMPTEL measurements of MeV gamma-ray burst spectra

    Get PDF
    We present results from the on-going spectral analysis of gamma-ray bursts measured by the COMPTEL instrument in its main Compton “Telescope” observing mode (0.75–30 MeV). Thus far, 18 bursts have been analyzed from three years (April 1991–April 1994) of observations. The time-averaged spectra of these events above 1 MeV are all consistent with a simple power law model with spectral index in the range 1.5–3.5. Exponential, thermal bremsstrahlung and thermal synchrotron models are statistically inconsistent with the burst sample, although they can adequately describe some of the individual burst spectra. We find good agreement between burst spectra measured simultaneously by BATSE, COMPTEL and EGRET, which typically show a spectral transition or “break” in the BATSE energy range around a few hundred keV followed by simple power law emission extending to hundreds of MeV. However, the temporal relation between MeV and GeV (e.g., as measured by EGRET) burst emission is still unclear. Measurement of rapid variability at MeV energies in the stronger bursts provides evidence that either the sources are nearby (within the Galaxy) or the gamma-ray emission is relativistically beamed

    High-accuracy global time and frequency transfer with a space-borne hydrogen maser clock

    Get PDF
    A proposed system for high-accuracy global time and frequency transfer using a hydrogen maser clock in a space vehicle is discussed. Direct frequency transfer with a accuracy of 10 to the minus 14th power and time transfer with an estimated accuracy of 1 nsec are provided by a 3-link microwave system. A short pulse laser system is included for subnanosecond time transfer and system calibration. The results of studies including operational aspects, error sources, data flow, system configuration, and implementation requirements for an initial demonstration experiment using the Space Shuttle are discussed

    Spectral properties of gamma‐ray bursts observed by COMPTEL

    Get PDF
    During the first year of operation, the COMPTEL instrument on board the Compton Gamma Ray Observatory detected 22 γ‐ray bursts within its field of view. Spectra and time histories for the strongest 7 of these bursts have been obtained from both the main instrument (0.75–30 MeV) and the burst modules (0.1–10 MeV). The deconvolved photon spectra for the majority of bursts are fit by a single power law model with spectral index between −1.6 and −2.8. One strong burst, GRB 910814, exhibited significant curvature and could not be fit by a single power law model. A broken power law model with a break in slope at ∼2 MeV is a good fit to the time averaged spectrum of this burst. There is evidence, at the 2.8σ level, for a change in the break energy of GRB 910814, from above 2 MeV to below 1 MeV during the first 9 s of the burst

    Comptel observations of the quasar PKS 0528+134

    Get PDF
    During Phase I and Phase II of the CGRO‐mission, the quasar PKS 0528+134 was in the field of view of the COMPTEL instrument during several viewing periods. The quasar was detected by COMPTEL mainly at energies above 10 MeV. Below 10 MeV there is evidence for the source during some CGRO viewing periods, while below 3 MeV no signal is detected. The detections and non‐detections during different viewing periods follow the trend seen by EGRET, thereby indicating a time‐variable MEV‐flux of the quasar. The COMPTEL spectral results together with the simultaneously measured EGRET spectrum, indicate a spectral break in the upper part of the COMPTEL energy range at energies between 10 MeV and 30 MeV

    The angular distribution of COMPTEL Gamma-Ray bursts

    Get PDF
    The superior burst location capability of the COMPTEL instrument aboard the Compton Gamma-Ray Observatory allows us to study the small-scale angular distribution of burst sources with good sensitivity even though the number of burst detections is small. We accumulate four years (April 1991–April 1995) of observations to form a catalog of 27 burst locations whose mean 1σ uncertainty is ∼1°. We find that the COMPTEL bursts are consistent with an isotropic distribution of sources, yet the spatial coincidence of two of the bursts within COMPTEL’s angular resolution indicates the possibility of repetition. This possibility is studied using the two-point angular correlation function and the nearest neighbor statistic. Model dependent upper limits on the fraction of repeating sources are derived

    MeV measurements of γ-ray bursts by CGRO-COMPTEL: Revised catalog

    Get PDF
    The imaging COMPTEL telescope has accumulated 0.1–30 MeV spectra, time-histories, and positions of more than forty γ-ray bursts within its ∼3 sr field of view in the eight years since its launch. CGRO-COMPTEL measures in both imaging “telescope” and single detector “burst spectroscopy” mode. In an ongoing collaboration with BACODINE/GCN, bursts are imaged automatically, with localizations relayed to a global network of multiwavelength observers in near real time (∼10 minutes). We have updated our burst search procedure in two ways: 1) using more sensitive search algorithms; and 2) using data from more detectors. The first are double change-point algorithms. With these we can find regions of significant excess flux with no assumptions on the wide range of burst time-scales (e.g., rise-times or decay-times) or intensities, and only one adjustable parameter (the time-averaged count-rate of the detectors). This makes it simpler to combine information on burst time-histories from the larger effective area (but cruder time bins) burst spectroscopy detectors, and hence better pinpoint the best times for imaging each burst. We report the eight bursts detected during 1998–1999
    corecore