11,379 research outputs found

    Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass

    Get PDF
    The recent development of metallic alloy systems which can be processed with an amorphous structure over large dimensions, specifically to form metallic glasses at low cooling rates (similar to 10 K/s), has permitted novel measurements of important mechanical properties. These include, for example, fatigue-crack growth and fracture toughness behavior, representing the conditions governing the subcritical and critical propagation of cracks in these structures. In the present study, bulk plates of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy, machined into 7 mm wide, 38 mm thick compact-tension specimens and fatigue precracked following standard procedures, revealed fracture toughnesses in the fully amorphous structure of K(lc)similar to 55 MPa root m, i.e., comparable with that of a high-strength steel or aluminum ahoy. However, partial and full crystallization, e.g., following thermal exposure at 633 K or more, was found to result in a drastic reduction in fracture toughness to similar to 1 MPa root m, i.e., comparable with silica glass. The fully amorphous alloy was also found to be susceptible to fatigue-crack growth under cyclic loading, with growth-rate properties comparable to that of ductile crystalline metallic alloys, such as high-strength steels or aluminum alloys; no such fatigue was seen in the partially or fully crystallized alloys which behaved like very brittle ceramics. Possible micromechanical mechanisms for such behavior are discussed

    Modelling alternative strategies for delivering hepatitis B vaccine in prisons : the impact on the vaccination coverage of the injecting drug user population

    Get PDF
    Since 2001 hepatitis B vaccination has been offered to prisoners on reception into prisons in England and Wales. However, short campaigns of vaccinating the entire population of individual prisons have achieved high vaccination coverage for limited periods, suggesting that short campaigns may be a preferable way of vaccinating prisoners. A model is used that describes the flow of prisoners through prisons stratified by injecting status to compare a range of vaccination scenarios that describe vaccination on prison reception or via regular short campaigns. Model results suggest that vaccinating on prison reception can capture a greater proportion of the injecting drug user (IDU) population than the comparable campaign scenarios (63% vs. 55 . 6% respectively). Vaccination on prison reception is also more efficient at capturing IDUs for vaccination than vaccination via a campaign, although vaccination via campaigns may have a role with some infections for overall control

    Direct genomic sequencing of bacterial DNA: the pyruvate kinase I gene of Escherichia coli.

    Full text link

    A model checking approach to the parameter estimation of biochemical pathways

    Get PDF
    Model checking has historically been an important tool to verify models of a wide variety of systems. Typically a model has to exhibit certain properties to be classed ‘acceptable’. In this work we use model checking in a new setting; parameter estimation. We characterise the desired behaviour of a model in a temporal logic property and alter the model to make it conform to the property (determined through model checking). We have implemented a computational system called MC2(GA) which pairs a model checker with a genetic algorithm. To drive parameter estimation, the fitness of set of parameters in a model is the inverse of the distance between its actual behaviour and the desired behaviour. The model checker used is the simulation-based Monte Carlo Model Checker for Probabilistic Linear-time Temporal Logic with numerical constraints, MC2(PLTLc). Numerical constraints as well as the overall probability of the behaviour expressed in temporal logic are used to minimise the behavioural distance. We define the theory underlying our parameter estimation approach in both the stochastic and continuous worlds. We apply our approach to biochemical systems and present an illustrative example where we estimate the kinetic rate constants in a continuous model of a signalling pathway

    Final-Focus System for CLIC at 3 TeV

    Get PDF
    We describe a base-line optics for a 3-TeV final-focus system of the Compact Linear Collider (CLIC). The proposed system consists of an initial beta-matching region, two chromatic correction sections, and a final transformer, and it provides a total demagnification by a factor 90 horizontally and 346 vertically. The length per side amounts to 3.3 km. The effect of synchrotron radiation and higher-order aberrations is minimised by an odd dispersion function in the chromatic correction section. For a total flat energy spread of 1%, the system promises a luminosity of about 80% of the ideal. The 20-30% spot-size dilutions in the two transverse planes reflect a trade-off between the Oide effect and higher-order chromo-geometric aberrations

    Modelling the hepatitis B vaccination programme in prisons

    Get PDF
    A vaccination programme offering hepatitis B (HBV) vaccine at reception into prison has been introduced into selected prisons in England and Wales. Over the coming years it is anticipated this vaccination programme will be extended. A model has been developed to assess the potential impact of the programme on the vaccination coverage of prisoners, ex-prisoners, and injecting drug users (IDUs). Under a range of coverage scenarios, the model predicts the change over time in the vaccination status of new entrants to prison, current prisoners and IDUs in the community. The model predicts that at baseline in 2012 57% of the IDU population will be vaccinated with up to 72% being vaccinated depending on the vaccination scenario implemented. These results are sensitive to the size of the IDU population in England and Wales and the average time served by an IDU during each prison visit. IDUs that do not receive HBV vaccine in the community are at increased risk from HBV infection. The HBV vaccination programme in prisons is an effective way of vaccinating this hard-to-reach population although vaccination coverage on prison reception must be increased to achieve this

    Dynamics of a vortex domain wall in a magnetic nanostrip: an application of the collective coordinate approach

    Get PDF
    The motion of a vortex domain wall in a ferromagnetic strip of submicron width under the influence of an external magnetic field exhibits three distinct dynamical regimes. In a viscous regime at low fields the wall moves rigidly with a velocity proportional to the field. Above a critical field the viscous motion breaks down giving way to oscillations accompanied by a slow drift of the wall. At still higher fields the drift velocity starts rising with the field again but with a much lower mobility dv/dH than in the viscous regime. To describe the dynamics of the wall we use the method of collective coordinates that focuses on soft modes of the system. By retaining two soft modes, parametrized by the coordinates of the vortex core, we obtain a simple description of the wall dynamics at low and intermediate applied fields that describes both the viscous and oscillatory regimes below and above the breakdown. The calculated dynamics agrees well with micromagnetic simulations at low and intermediate values of the driving field. In higher fields, additional modes become soft and the two-mode approximation is no longer sufficient. We explain some of the significant features of vortex domain wall motion in high fields through the inclusion of additional modes associated with the half-antivortices on the strip edge.Comment: Minor revisions as suggested by refere

    Doppler cooling of a Coulomb crystal

    Get PDF
    We study theoretically Doppler laser-cooling of a cluster of 2-level atoms confined in a linear ion trap. Using several consecutive steps of averaging we derive, from the full quantum mechanical master equation, an equation for the total mechanical energy of the one dimensional crystal, defined on a coarse-grained energy scale whose grid size is smaller than the linewidth of the electronic transition. This equation describes the cooling dynamics for an arbitrary number of ions and in the quantum regime. We discuss the validity of the ergodic assumption (i.e. that the phase space distribution is only a function of energy). From our equation we derive the semiclassical limit (i.e. when the mechanical motion can be treated classically) and the Lamb-Dicke limit (i.e. when the size of the mechanical wave function is much smaller than the laser wavelength). We find a Fokker-Planck equation for the total mechanical energy of the system, whose solution is in agreement with previous analytical calculations which were based on different assumptions and valid only in their specific regimes. Finally, in the classical limit we derive an analytic expression for the average coupling, by light scattering, between motional states at different energies.Comment: 19 pages, 3 figure

    Systematic review of diagnostic tests for reproductive-tract infection and inflammation in dairy cows

    Get PDF
    The objective of this study was to conduct a systematic and critical appraisal of the quality of previous publications and describe diagnostic methods, diagnostic criteria and definitions, repeatability, and agreement among methods for diagnosis of vaginitis, cervicitis, endometritis, salpingitis, and oophoritis in dairy cows. Publications (n = 1,600) that included the words "dairy," "cows," and at least one disease of interest were located with online search engines. In total, 51 papers were selected for comprehensive review by pairs of the authors. Only 61% (n = 31) of the 51 reviewed papers provided a definition or citation for the disease or diagnostic methods studied, and only 49% (n = 25) of the papers provided the data or a citation to support the test cut point used for diagnosing disease. Furthermore, a large proportion of the papers did not provide sufficient detail to allow critical assessment of the quality of design or reporting. Of 11 described diagnostic methods, only one complete methodology, i.e., vaginoscopy, was assessed for both within- and between-operator repeatability (κ = 0.55-0.60 and 0.44, respectively). In the absence of a gold standard, comparisons between different tests have been undertaken. Agreement between the various diagnostic methods is at a low level. These discrepancies may indicate that these diagnostic methods assess different aspects of reproductive health and underline the importance of tying diagnostic criteria to objective measures of reproductive performance. Those studies that used a reproductive outcome to select cut points and tests have the greatest clinical utility. This approach has demonstrated, for example, that presence of (muco)purulent discharge in the vagina and an increased proportion of leukocytes in cytological preparations following uterine lavage or cytobrush sampling are associated with poorer reproductive outcomes. The lack of validated, consistent definitions and outcome variables makes comparisons of the different tests difficult. The quality of design and reporting in future publications could be improved by using checklists as a guideline. Further high-quality research based on published standards to improve study design and reporting should improve cow-side diagnostic tests. Specifically, more data on intra- and interobserver agreement are needed to evaluate test variability. Also, more studies are necessary to determine optimal cut points and time postpartum of examination

    Mapping Valley Bottom Confinement at the Network Scale

    Get PDF
    In this article, we demonstrate the application of a continuous confinement metric across entire river networks. Confinement is a useful metric for characterizing and discriminating valley setting. At the reach scale, valley bottom confinement is measured and quantified as the ratio of the length of channel confined on either bank by a confining margin divided by the reach length. The valley bottom is occupied by the contemporary floodplain and/or its channel(s); confining margins can be any landform or feature that makes up the valley bottom margin, such as bedrock hillslopes, terraces, fans, or anthropogenic features such as stopbanks or constructed levees. To test the reliability of calculating confinement across entire networks, we applied our geoprocessing scripts across four physiographically distinct watersheds of the Pacific Northwest, USA using freely available national datasets. Comparison of manually digitized and mapped with modeled calculations of confinement revealed that roughly one‐third of reaches were equivalent and about two‐thirds of the sites differ by less than ±15%. A sensitivity analysis found that a 500 m reach segmentation length produced reasonable agreement with manual, categorical, expert‐derived analysis of confinement. Confinement accuracy can be improved (c. 4% to 17% gains) using a more accurately mapped valley bottom and channel position (i.e. with higher‐resolution model inputs). This is particularly important when differentiating rivers in the partly confined valley setting. However, at the watershed scale, patterns derived from mapping confinement are not fundamentally different, making this a reasonably accurate and rapid technique for analysis and measurement of confinement across broad spatial extents
    corecore