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Abstract 

In this paper, we demonstrate the application of a continuous confinement metric 

across entire river networks. Confinement is a useful metric for characterizing and 

discriminating valley setting. At the reach scale, valley bottom confinement is 

measured and quantified as the ratio of the length of channel confined on either bank 

by a confining margin divided by the reach length. The valley bottom is occupied by 

the contemporary floodplain and/or its channel(s); confining margins can be any 

landform or feature that makes up the valley bottom margin, such as bedrock 

hillslopes, terraces, fans, or anthropogenic features such as stopbanks or 

constructed levees. To test the reliability of calculating confinement across entire 

networks, we applied our geoprocessing scripts across four physiographically distinct 

watersheds of the Pacific Northwest, USA using freely available national datasets. 

Comparison of manually digitized and mapped with modelled calculations of 

confinement revealed that roughly 1/3 of reaches were equivalent and about 2/3 of 

the sites differ by less than ±15%. A sensitivity analysis found that a 500 m reach 

segmentation length produced reasonable agreement with manual, categorical, 

expert-derived analysis of confinement. Confinement accuracy can be improved 

(circa 4% to 17% gains) using a more accurately mapped valley bottom and channel 

position (i.e., with higher-resolution model inputs). This is particularly important when 

differentiating rivers in the partly confined valley setting. However, at the watershed 

scale, patterns derived from mapping confinement are not fundamentally different, 

making this a reasonably accurate and rapid technique for analysis and 

measurement of confinement across broad spatial extents. 
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Introduction 

Understanding how and why a river channel adjusts on a valley bottom is a key 

component of river science and management. Geomorphologists have developed a 

good understanding of primary controls upon channel geometry and planform in fully 

alluvial settings in which the channel creates its own morphology, based upon 

relations between slope, discharge, bed material size and bank strength (e.g., Eaton 

and Millar, 2017). Such situations contrast starkly with fully imposed (forced) 

morphologies of bedrock rivers (e.g., Tinkler and Wohl, 1998). Differentiation of 

bedrock and alluvial rivers define end-member conditions along the spectrum of 

geomorphic river diversity. These end-members, and the continuum of rivers that lie 

between them, are influenced by confinement, which characterizes the extent to 

which a channel freely adjusts across a the valley bottom (Fryirs and Brierley, 2010; 

Fryirs, et al., 2016). This paper develops and tests a geoprocessing procedure that 

determines the spatial variability of reach-scale confinement across drainage 

networks. 

 

Geomorphologists have long used absolute measures of channel width and valley 

width to analyze the scale and scope for channel adjustment on the valley bottom 

(Montgomery and Buffington, 1998; Rosgen, 1994; Wolman and Miller, 1960). 

Traditionally, the ratio of channel width to valley width has been used as a 

normalized index for discriminating process regimes in different valley settings (cf. 

Alber and Piegay, 2011; Hall, et al., 2007). Nagel, et al. (2014) employed network 

and DEM inputs to calculate confinement based on cost-weighted distance 

(sensitivity or “cost” to changing slope values with lateral distance in raster analysis), 

flood height, slope and maximum valley width. However, such measures produce 
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only confined and unconfined binaries that occur on either side of a discrete valley 

width:bankfull width threshold (Wohl, 2013; Wohl, et al., 2012). Similar measures, 

such as entrenchment ratios (e.g., Rosgen, 1996), use the ratio of bankfull channel 

width to width at 2x bankfull height. Similarly, Roux, et al. (2015) and Gilbert, et al. 

(2016) developed a suite of GIS-based tools designed to extract valley bottoms for 

use in measuring valley confinement.  All these approaches rely on accurate 

quantification of the width dimension of features on the valley bottom. 

 

However, as Figure 1A illustrates, a simple ratio of valley bottom (or valley) width to 

bankfull width can fail to discriminate some fundamentally different geomorphic 

settings. This is not to suggest absolute measures of channel and valley bottom 

width are not useful. Part of their utility rests in the simplicity with which they can be 

calculated and their conceptual elegance. However, such approaches do not take 

into account the position of the channel on the valley bottom or the extent of 

confining margins encountered by an active channel. This is a distinct and important 

characteristic of the confinement approach proposed by Fryirs, et al. (2016), aiding 

differentiation of valley settings along a river course. Moreover, this method poses a 

significant advantage over existing tools because outputs can be linked directly to 

interpretations of the capacity for channel adjustment (e.g., they illustrate baseline 

boundary conditions imposed on the channel by the valley and valley landforms) and 

by extension, to analyses of river channel sensitivity.   

 

In Fryirs, et al. (2016) we proposed that a measure of ‘confinement’ based on length 

ratios is equally simple to measure, but less sensitive to the precision of width 

measurements or underlying mapping, and is a better discriminator of valley settings. 
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In Fryirs, et al. (2016), we defined confinement as the percentage of length of a 

channel margin that abuts a confining margin on either bank. Building on a taxonomy 

proposed by Wheaton, et al. (2015) that defined margin types for geomorphic 

features on the valley bottom, Fryirs, et al. (2016) laid out consistent definitions for 

calculating three types of confinement: valley confinement, valley bottom 

confinement and anthropogenic confinement (Figure 1B).  

 

Quantification of confinement provides a basis to differentiate between confined, 

partly confined and laterally unconfined valley settings (Brierley and Fryirs, 2005; 

Fryirs, et al., 2016) whereby the degree to which river morphology reflects an 

imposed condition varies along a confinement continuum from no contact (i.e. 0%) to 

continuous contact (i.e.100%) of the channel with a confining margin. Brierley and 

Fryirs (2005, see §9.3.1.1) cautiously suggested approximate confinement value 

breaks of 10% for the transition between laterally unconfined and partly confined; 

and 90% for the transition between partly confined and confined. Physically, this 

differentiation of confined, partly confined and laterally unconfined valley settings 

reflects whether floodplains are continuous, discontinuous, occasional or absent 

altogether, respectively (Figure 2).  

 

The emergence of high resolution topography (HRT) now supports production of 

digital elevation models (DEMs) with 2 m resolution and higher that can be used for 

a range of different geomorphic applications, including analysis of confinement 

(Passalacqua, et al., 2015; Stout and Belmont, 2013). While coverage of HRT is ever 

growing (with nationwide coverages emerging in some smaller nations), the reality in 

most locations on earth (including most of the US) is that HRT is on the horizon as 
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opposed to being readily available today. Moreover, even if HRT were ubiquitous 

and available now, from a pragmatic perspective we face non trivial computational 

challenges when such datasets are applied at broad spatial scales (Schaffrath, et al., 

2015) or across entire drainage networks with sizeable watershed area (i.e. > 100 

km2). However, this should not halt the process of using available datasets to 

achieve the same outcome. For example, there are far more watersheds across the 

world for which intermediate resolution topography datasets (hereafter “coarse-

resolution inputs”) datasets are available (e.g. Table 1). This presents an opportunity 

for wide-ranging, comparative geomorphic assessment across different settings, 

thereby supporting, for example, region-wide analyses of river diversity (e.g., Bizzi, 

et al., 2018; Demarchi, et al., 2016) 

 

This paper presents a pragmatic geoprocessing approach for measuring 

confinement and uses it to explore how well valley bottom confinement can be 

measured and mapped using coarse-resolution inputs such as 5 to 10 m resolution 

digital elevation models (DEMs; e.g. National Elevation Datasets - NED in USA; 

(USGS, 1999)), and nationally available stream networks (e.g. National Hydrography 

Dataset – NHD (McKay, et al., 2012)). We then test how well the GIS algorithm 

outlined below can be applied across entire drainage networks to continuously map 

and discriminate valley settings. Our working hypothesis is that coarse-resolution 

inputs will be adequate to differentiate the most fundamental differences in valley 

settings. A sensitivity analysis verifies the differentiation of valley setting output 

across four watersheds in the Columbia River Basin in the US Pacific Northwest. 
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Methods 

Confinement Calculation Workflow 

 

The calculation of the three forms of confinement outlined in Fryirs, et al. (2016) 

(valley confinement, valley bottom confinement and anthropogenic confinement) take 

the form of: 

 

Equation 1   𝐶 = ((∑ 𝐶𝐿𝐸𝐵@𝐶𝑀𝑈𝑆
𝐷𝑆 ) 𝐶𝐿𝑇⁄ ) × 100 

 

where 𝐶 is confinement (between 0 and 100%), ∑ 𝐶𝐿𝐸𝐵
𝑈𝑆
𝐷𝑆 is the sum total centerline 

length of channel over the distance that the channel margin along either bank abuts 

a confining margin (@CM), and 𝐶𝐿𝑇 is the total centerline length of a channel 

segment under consideration. It is important to note that the measure of 

𝐶𝐿𝐸𝐵@𝐶𝑀does not double-count where the channel is confined along both banks 

and overlaps, which is a measure of constriction; see Fryirs, et al. (2016). Also note 

that we use the term segment as a noun to describe the portion of the network 

polyline being analyzed, and not as a proxy for a river reach defined by geomorphic 

characteristics and a distinctive structure and function such that a relatively uniform 

morphology results (Fausch, et al., 2002; Kellerhals, et al., 1976).  

 

Confinement is a dimensionless quantity, but its value is sensitive to the segment 

length (𝐶𝐿𝑇) over which it is calculated. The input quantities ∑ 𝐶𝐿𝐸𝐵@𝐶𝑀𝑈𝑆
𝐷𝑆  and 𝐶𝐿𝑇 

are straightforward to measure manually off maps or imagery of sufficient resolution 

and detail, or in the field for a single river reach (Figure 3). Below, we describe a 

geoprocessing workflow with which the confinement value can be calculated and 
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attributed to every segment across an entire drainage network and applied 

continuously at the network scale. The primary inputs from which calculations are 

derived are two polygon inputs, one representing the bankfull channel margin 

boundaries, and the other representing the potential confining margins (i.e. valley 

margin, valley bottom margin, or anthropogenic margin). It is important to note that 

currently, our method provides a single confinement output (continuous values from 

0.0 to 1.0) and does not automatically classify valley confinement (CV), valley bottom 

confinement (CVB), and anthropogenic confinement (CA) separately. To differentiate 

these confinements as outputs, a user needs to consciously run the tool each time 

with potential confining margins representing valley margins, valley bottom margins 

and/or anthropogenic margins separately.  

 

Manual implementation of the confinement calculation workflow is straightforward, 

but for ease of application over large drainage networks we developed a 

geoprocessing toolbox for ArcGIS. We refer to this GIS algorithm as the 

Confinement Tool (see:http://confinement.riverscapes.xyz). The source code is freely 

available (https://github.com/Riverscapes/ConfinementTool) and written in Python 

with ArcPy libraries. The ‘tool’ has not yet been refactored into an easy-to-use, 

stand-alone or Add-In without Arc version-specific dependencies, and sophisticated 

error handling. As such, the open-source tool should allow experienced GIS users, 

with some Python proficiency to reproduce the results presented here or apply the 

model with similar data in their areas. Moreover, experienced programmers can 

extend the code for their own applications or refactor it altogether. However, it would 

be an over-statement to imply this tool is ready to apply anywhere. That said, the 

methods are simple, robust and easily extendible to any part of the world where the 

inputs can be produced. 

http://confinement.riverscapes.xyz/
https://github.com/Riverscapes/ConfinementTool
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Network Preparation and Processing Extent 

A polyline drainage network is needed as a primary model input as it represents the 

centerline position of the active channel, and provides the basis to define reaches. 

From this we can specify the reach length over which confinement is calculated and 

resolved. Acquiring or deriving the drainage network is the first step in the 

confinement calculation process (Figure 3, Step 1). If deriving a network from 

scratch, this can be done manually (i.e. digitizing from imagery), or automatically 

from digital elevation models (DEMs) through flow accumulation based algorithms 

(Holmgren, 1994; Lindsay, 2016). Alternatively, in many countries, regions and 

municipalities, existing base hydrography and/or drainage network layers exist (e.g. 

NHD in the USA and National Surface Hydrology Database in Australia (Table 1). If 

using existing hydrographic networks, we recommend using cartographically derived 

(i.e. manually digitized) products (e.g. NHD 1:24K as opposed to NHD+ 1:100K in 

the USA) over hydrographically derived networks produced from coarse-resolution 

DEMs (e.g. >5m resolution). While LiDAR derived drainage networks may be used 

(e.g., Passalacqua, et al., 2015), some caution should be exercised as these may 

include too many fine-scale watercourses (e.g. ditches, swales, curbs and gutters), 

thereby increasing the processing time and hindering interpretation of the output.  

 

An optional step in network preparation is to subset the drainage network to the 

desired processing extent (e.g. the drainage basin of interest, or part(s) thereof). In 

some applications, it may be desirable to filter out ephemeral and intermittent 

watercourses and only focus on perennial watercourses. Similarly, many digital 

drainage networks have anthropogenic ditches and canals, whereas some have 
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‘artificial connectors’ (e.g., across a reservoir or a swamp) to maintain topological 

and hydrologic connectivity. If the positional accuracy of the drainage network is 

inadequate, manual editing of the network geometry may be warranted to achieve 

better alignment with actual channel position (e.g. using underlying base imagery or 

mapping). 

 

Finally, the network can be segmented as appropriate to the application (Figure 3, 

Step 2). This will determine the 𝐶𝐿𝑇 length over which confinement is calculated. If 

𝐶𝐿𝑇 is too short, the confinement calculation will overestimate both high and low 

values (i.e. producing confined and laterally unconfined results), while 

underestimating partly confined situations (i.e. intermediate confinement). If 𝐶𝐿𝑇 is 

too long, it may mute out important occurrences of shorter confined or laterally 

unconfined segments. Various coordinate geometry (COGO) and geoprocessing 

algorithms exist for uniformly segmenting the network. Examples include designation 

of junctions using uniform segment lengths (e.g. every 500 m or 1000 m; e.g., 

http://gnat.riverscapes.xyz/). Some algorithms can apply a variable segmentation 

length (e.g. as a function of stream order or drainage area; (Roux, et al., 2015; 

Williams, et al., 2013)). It may be desirable to add additional segment breaks where 

the drainage network is intersected by lithological or landscape unit boundaries.  

 

Generate Channel and Confining Margin Polygons, and Derive Zone of Confinement 

Intersection 

As illustrated in Figure 3, Step 3, a channel margin polygon is needed to 

approximate the edge of the active channel. In some situations, this may be 

analogous or even equivalent to a bankfull polygon. This is generally, but not always, 

http://gnat.riverscapes.xyz/
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outside a low-flow or base-flow wetted edge margin. Channel margins could be 

automatically derived from high-resolution DEMs, hydraulic model simulations, 

image classification, field mapping, or manual digitizing of channel margins from 

aerial photography or high resolution DEMs. Alternatively, a channel margin could be 

approximated by applying a buffer (representing the active channel width) to a 

drainage network centerline. Simple regressions of active channel width to drainage 

area (e.g. Beechie and Imaki, 2014) may suffice as an approximation. In this study, 

we refer to the “active channel” as a bankfull polygon derived from a width offset to 

the input network centerline, as a function of drainage area (e.g., regional curve for 

bankfull width). Channel margins derived from higher resolution sources are more 

precise and have a higher positional accuracy than cruder approximations like 

network buffers. However, across large drainage networks, a simple network buffer 

may suffice for deriving confinement values and effectively discriminating among 

valley settings.  

 

Depending on the type of confinement that is being calculated (i.e. valley, valley 

bottom or anthropogenic), a polygon layer of that potential confining margin is 

needed (Figure 3, Step 1). As with the other inputs, this can be automatically derived 

from DEMs, or it may be manually derived either in the field or from existing layers 

using a combination of topographic and aerial photographic evidence. If the potential 

confining margin is anthropogenic, mapping of features like levees, roads, and 

railroads may be used. If the potential confining margin is a valley margin, 

geomorphic mapping of the valley bottom features (i.e. active channel and 

floodplain) need to be differentiated from bedrock hillslope features, fans and 

terraces to define the valley margin (O'Brien, et al., 2019; Stout and Belmont, 2014). 
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If the potential confining margin is a valley bottom margin, a variety of methods 

exists for deriving the valley bottom including 1.5D, 2D or 3D hydraulic modeling, 

manual delineation, the Fluvial Corridor Tool (Roux, et al., 2014) or the VBET – 

Valley Bottom Extraction Tool (Gilbert, et al., 2016). Depending on the resolution and 

scale of the valley bottom polygon being used, it may be necessary to provide a 

small buffer (similar to resolution of mapping) on the channel extent to ensure an 

intersection. For experiments reported in this paper, we used valley bottoms derived 

from a 10 m NED DEM and manually edited (for occasional resolution errors 

occurring at the margin between hillslope and valley bottom; cf. Gilbert, et al. (2016). 

These polygons comprise the valley bottom margin and do not differentiate valley 

margin, valley bottom margin, or anthropogenic confinement.  

 

The confining margin (pink segments of potential confining margin in Figure 3, Step 

5) is the portion of the potential confining margin that actually abuts the active 

channel. A simple intersection approach can be used to derive the confining margin 

using geoprocessing procedures. A buffer on the channel margin is needed to make 

an intersection between an abutting or immediately adjacent channel margin and the 

potential confining margin (Figure 3, Step 4). Depending on the resolution of base 

mapping from which the channel margin and potential confining margin are derived, 

different buffer widths may be appropriate. In general, an appropriate buffer is 

roughly 1.5 to 2 times the resolution or horizontal precision of the DEM.  

 

Confinement Calculation   

To calculate confinement using Equation 1, 𝐶𝐿𝑇 and ∑ 𝐶𝐿𝐸𝐵@𝐶𝑀 𝑈𝑆
𝐷𝑆 are needed for 

each segment. As illustrated in Figure 3, Step 2, 𝐶𝐿𝑇 is measured along the channel 



 

 

This article is protected by copyright. All rights reserved. 

centerline from the start of the segment to the end of the segment. It is important that 

∑ 𝐶𝐿𝐸𝐵@𝐶𝑀 𝑈𝑆
𝐷𝑆 is also summed and calculated along the centerline, as opposed to 

measuring the length of the confining margin polyline segments, which could skew 

the percentages to be longer on outside bends or shorter on inside bends. As shown 

in Figure 3, Step 6, the measurement along the centerline is made by deriving 

perpendicular lines from the confining margin end points and intersecting them with 

the centerline. These perpendicular lines effectively break the reach of interest into a 

series of smaller segments, each of which have their lengths calculated. Moving 

along every segment, the 𝐶𝐿𝐸𝐵@𝐶𝑀 is measured and counted if it corresponds to a 

zone of confinement on either bank (Figure 3, Steps 6 and 7).  

 

Model output is a continuous quantification of confinement where every reach 

segment has a value between 0-100%. This can then subsequently be categorized 

for cartographic or interpretive purposes. In this paper we present our confinement 

results and analyses using the valley setting classification presented in  Fryirs, et al. 

(2016) reproduced here in Table 2 and shown in Figure 2). We separately designate 

the continuous valley bottom confinement output values in terms of categorical 

breaks (the primary categories being laterally unconfined, partly confined, and 

confined, using percent valley bottom confinement breaks of 10% between laterally 

unconfined and partly confined, and a break of 90% between partly confined and 

confined). We further differentiated the partly confined valley setting into margin-

controlled (specific cases of which may be bedrock margin-controlled, or terrace 

margin-controlled) and planform-controlled (cases where the channel and floodplain 

is self-adjusting between intervals of contact with confining margins) (cf. Fryirs and 

Brierley, 2010).  
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Case Study Watershed Applications 

To illustrate the utility and validity of the above workflow, we applied the confinement 

algorithm using a 10m DEM (see Gilbert, et al., 2016; USGS, 2007) along 

streamlines of four watersheds in the Columbia River Basin in the US Pacific 

Northwest. (Figure 4; Table 3). These basins were chosen because they span a wide 

range of landscapes, ecoregions, relief and lithologies (Omernik and Griffith, 2014; 

Thorson, et al., 2003). Channel margins were derived by buffering the perennial 

portion of the NHD 1:24,000 cartographic drainage network using an empirical 

regression for bankfull width to drainage area developed by Beechie and Imaki 

(2014) for the Columbia River Basin.  Derivation of drainage area to drive the 

conversion was obtained from a flow accumulation calculation. 

 

Verification and Sensitivity to Segment Length Analysis 

We used three methods to assess sensitivity to the segment length of individual 

segments comprising the drainage network. An optimized segment length was used 

in separate exercises to validate model runs using the Confinement Tool.  

As indicated earlier, the segment length (𝐶𝐿𝑇) is one of the most important choices in 

preparing model inputs. To explore the sensitivity to confinement values to 𝐶𝐿𝑇 

length quantitatively and robustly, we segmented the input drainage network of the 

Upper Salmon watershed at 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 4000 and 

5000 m segment lengths. In Figure 5 we show how different maximum segmentation 

lengths result in different confinement outputs. Segment lengths should not be less 

than the channel width or the typical length scale of geomorphic units (i.e. > 1-3 
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channel widths), but should not be so long as to miss important geomorphic breaks 

(i.e. they should typically be < 5 km).  

 

We compare these calculations with an entirely expert-derived, manually classified 

confinement, which does not rely on segmentation but rather on visible geomorphic 

attributes to locate reach breaks. This “expert manual confinement” or EMC was 

performed following the method of Brierley and Fryirs (2005, see §9.3.1.1). EMC 

refers to a method of visually determining diagnostic geomorphic features comprising 

individual reach types, then using that information to delineate the valley setting and 

underlying confinement for an entire stream network. This produces “manually 

derived, categorical results” For this study, we used imagery to map reach breaks 

(boundaries between adjacent reaches), and (a) channel planform; (b) 

presence/absence and extent of floodplains; (c) confining margin and constriction 

proportion (see Fryirs, et al., 2016); (d) generalized instream geomorphic units and 

bed material caliber. In the case of the Upper Salmon watershed, we verified our 

manual delineation of reach types and valley setting with more than 30 field checks 

of our remotely sensed assessments. We transferred the km-scale information to the 

network in a GIS editing session (see O'Brien and Wheaton (2015);  O’Brien, et al. 

(2017)).  

 

Overall Accuracy of Using the Confinement Tool Compared to Expert Manual 

Confinement (EMC) 

We performed two types of verification to evaluate the workflow that drives the 

Confinement Tool. Both were done using trial runs in the Upper Salmon watershed. 

The first form of verification was to compare the model-calculated values of 
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confinement to manually delineated valley settings using EMC. For this analysis, we 

derived from the distribution of confinement values the percent of stream kilometers 

in each of these bins determined by categorical breaks as well as exploring other 

breakpoints. For example, we tested the break between partly confined and confined 

valley settings that were presented in Brierley and Fryirs (2005) as occurring at 90%. 

We tested whether a break point at 85% may better reflect confined rivers to account 

for those rivers that have occasional floodplain pockets (e.g. at tributary confluences 

or local valley widening) but their morphology is dominated by confinement. In 

addition, we compared predicted categorical calls on every polyline segment for 729 

km of streams and 2092 individual segments. We used multiple segment lengths to 

evaluate sensitivity and used these results to choose the most appropriate segment 

length to run the Confinement Tool across the basin.   

 

As a separate form of verification, we directly compared model outputs to manually 

measured and calculated values of confinement from the Upper Salmon watershed 

(Figure 6). This process is the same as EMC described above, but with additional 

steps to increase the accuracy of the calculated confinement. To do this, we took a 

random sample of 50 confined, 100 partly confined (parsed as 50 planform-

controlled and 50 margin-controlled) and 50 laterally unconfined polyline segments 

using the r.sample command in GME (Geospatial Modeling Environment; 

Spatialecology.com). In each segment, we used the same 𝐶𝐿𝑇 inherited from the 

segmented NHD network, but independently assessed the valley bottom margin 

along each randomly selected segment with air photos and independently calculated 

valley bottom confinement using digitized stream lengths and digitized confining 

margins. Residuals were compared to assess overall performance of the model 
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when run with coarse-resolution inputs (i.e., the NHD streamlines; inset photos of 

Figure 6). We hypothesized that using hand-digitized stream lengths and confining 

margins would produce a more accurate snapshot of the actual confinement than the 

modeled output resulting from coarse-resolution inputs. To test this, we plotted 

confinement against total stream length in three ways: (a) as output from the 

Confinement Tool using the NHD streamline; (b) output from the Confinement Tool 

using manually digitized stream lengths as the streamline input; and (c) manually 

digitized and measured stream lengths and confining margins (EMC), calculated 

using equation 1, entirely independently from the Confinement Tool. The two model 

runs (items a and b, above) used buffered bank full polygons derived from their NHD 

and manually digitized streamlines, respectively, but employed the same valley 

bottom polygon. 

 

Influence of Input Map Layer Resolution and Quality 

Although the primary purpose of this paper is to explore how well valley bottom 

confinement can be calculated across entire drainage networks using coarse-

resolution inputs, we were particularly interested in whether or not the model was 

getting the ‘wrong answer for the right reasons’. In other words, we would be 

satisfied with the validity of the confinement algorithm if the places it diverges from a 

manually derived calculation is based on having poor inputs such as an inaccurate 

valley bottom delineation, or a poor quality stream network that misplaces the 

position/location of the channel on the valley bottom. It is logical that higher 

resolution inputs and more precise mapping of potential confining margins and 

channel margins will yield more accurate results. To test this assertion, we compared 

model outputs using nationally available inputs from the Tucannon watershed with a 
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valley bottom polygon derived from a 1 m DEM, using VBET (cf. Gilbert, et al., 

2016), and with a channel margin that was manually digitized from LiDAR data and 

concurrent high resolution aerial imagery obtained from Watershed Sciences (2010). 

 

Results and Interpretation 

Verification and Sensitivity to Segment Length Analysis 

The primary verification output we used was from the Upper Salmon watershed, 

Idaho. Figure 7B shows an example of the Confinement Tool output using the 

original unedited geometry of the NHD drainage network segmented with a 

maximum segmentation length of 500 m and based on a valley bottom derived from 

a 10 m NED DEM and manually edited. Figure 7B is based on a continuous 

quantification of confinement (i.e. every reach segment has a value between 0 and 

100%), but has been symbolized using categorical breaks for different confinement 

classes described above.  

 

Qualitatively, the map compares very favorably with the independently derived EMC 

shown in Figure 7A. Both results (Confinement Tool output and EMC) were 

conducted on the same segmented NHD network. The largest discrepancies occur in 

the higher order streams (Table 4) where there is a tendency for the Confinement 

Tool to split out smaller segments into confinement settings that differ from their 

neighbors. Often, whereas the manual delineation using EMC lumps longer 

consecutive segments of the same confinement category. 
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To illustrate the sensitivity of the Confinement Tool output 𝐶 compared with manually 

derived, categorical results (EMC) we plotted a succession of segment lengths 

relative to the total network stream length in the Upper Salmon watershed (Figure 8). 

The resulting plots show that estimates derived using longer segment lengths tend to 

underestimate laterally unconfined settings and overestimate the portion of confined 

and partly confined, margin-controlled settings. The process of segmenting the 

native NHD drainage network produces a large percentage of segments that are 

shorter than the target segment length. This is most pronounced with longer 

segment lengths (e.g. 5000 m), and least with short segment lengths (250-500 m) 

because a greater number of low order tributaries and shorter segments forced by 

network topology are omitted with increased segment length. Figure 8B shows the 

confinement data plotted against total stream length using only segment lengths that 

are exactly as indicated (e.g. 250, 500, etc.). Viewed another way, Figure 8C is the 

frequency of network segments within percent confinement categories segmented at 

multiple lengths. Comparison of EMC and modeled confinement suggests that 

laterally unconfined reaches are somewhat under predicted (but best represented by 

shorter segment runs), whereas partly confined and confined settings are best 

represented by model outputs using the network segmented at 500 m. The results of 

these two outputs (EMC and 500 m segment model output) at the watershed scale 

are shown in Figure 7.  

 

Figure 9 shows the results of a test of the average segment length inherent in the 

base cartographically derived NHD drainage networks for the Tucannon, Grande 

Ronde, Middle Fork John Day, and Upper Salmon watershed. All were clipped to the 

perennial extent. The average segment length of 466 m is similar to the best fit result 
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we found in the Upper Salmon of 500 m. Based on topology of the NHD networks, 

this suggests that 500 m segments are most suitable for calculating confinement 

when compared to the average segment lengths representing confluence to 

confluence characteristics of these watersheds.    

 

Overall Accuracy Compared to Manual Delineations 

To gauge the accuracy of modeled output, we compared results of modeled and 

EMC in the Upper Salmon watershed (see Figure 7). Confinement determined by 

EMC has limited precision because channel planform and confining margins are 

visually assessed and not digitized and measured; yet, it is arguably an accurate 

technique for assessing the geomorphic setting because we rely on rigorous air 

photo reconnaissance and field checks (e.g., O’Brien, et al. (2017), Plate 3) to 

identify diagnostic features of the valley, channel and floodplain. Modeled 

confinement, on the other hand, is internally precise but is generally inaccurate with 

respect to actual landscape contours. This arises because the valley bottom and 

buffered bankfull produced from a 10 m DEM and the coarse nature of NHD network 

fail to capture subtleties (and oftentimes, large scale) features of the geomorphic 

setting (see Figure 6, inset photos A and B).  

 

We compared the distribution of categorical EMC versus modeled confinement for 

the Upper Salmon watershed (n = 2089 network segments; Figure 10) to quantify the 

level of agreement. Although the interquartile range exceeds the estimated 

categorical breaks of each category (laterally unconfined <10%; partly confined 10-

50% and 50-85%; and confined >85%), the median values are well within each 

category, and reasonably close to their central values. Importantly, modeled 
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confinement values differ significantly between each manual classification. Our 

modelled results suggest that a better breakpoint at 85% occurs to reflect the 

confinement transition from partly confined to confined valley settings. As this is 

empirical, this may be interesting to explore how well these categorical breaks hold 

in other physiographic settings. 

 

Several insights emerged from our study of 207 randomly selected and analyzed 

reaches shown in Figure 6. Quantitatively, the model output displayed ~10% more 

confined reaches, significantly more laterally unconfined reaches, and 

correspondingly fewer numbers of partly confined reaches, than did confinement 

calculated using EMC (e.g., manually digitized streamlines and confining margins 

calculated using Equation 1). When digitized streamlines were used in place of the 

NHD drainage network as the model input, results were similar to those calculated 

manually, but with proportionally more partly confined and fewer confined streams 

(Figure 11). In this case, we recognize that coupling cartographically realistic, hand-

digitized planform segments with valley bottoms and bankfull channel polygons 

derived from low-resolution base layers may not increase the realism and accuracy 

of confinement calculations (see later).  

 

To further compare the model outputs versus EMC and modeled results for the 

randomly selected streamline dataset, we produced a distribution of difference and 

regression. Figure 12 shows that 30% of all confinement values are equivalent, and 

about half (45%) differ only ±5% (n = 207). Moreover, 67% of the sites differ by less 

than ±15%. Most of the agreement in this comparison rests with end member 

confinement values equal to 0 and 1 (i.e., where the valley setting is clearly confined 
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or laterally unconfined). This is because the modeled output (using coarse-resolution 

inputs) versus EMC are less likely to diverge when the valley setting is clearly 

laterally unconfined or confined. However, the opposite is true of partly confined, 

margin-controlled and partly confined, planform-controlled settings, where manually 

digitized streamline and confining margins are likely to produce more precise 

calculation of partly confined reaches than would a model output using coarse input 

products. Despite the difference between inputs for this analysis, the relationship 

between the manually digitized EMC versus modeled has an r2 = 0.64 and nearly 

half vary only slightly.  

 

Influence of Input Map Layer Resolution and Quality 

Higher resolution input datasets might produce more precise measures of reach-

scale confinement across networks. To illustrate this, we compared valley bottom 

and bankfull polygons using 1 m and 10 m base DEMs, and streamlines derived 

from their respective rasters for the mainstem Tucannon River (Figure 13 and Table 

5). Using a 1 m DEM resulted in significantly greater total stream length relative to a 

10 m DEM (156 km versus 118 km, owing to increased planform sinuosity detectable 

by LiDAR and anabranching channels in some places). In terms of confinement, the 

amount of laterally unconfined reaches was nearly double that produced by a 10 m 

DEM, whereas the proportion of partly confined and confined reaches was reduced. 

 

High-resolution vector and raster data inputs (e.g., 1 m DEM with digitized stream 

lines) produces the clearest, most realistic results, with greater certainty than when 

using lower resolution inputs. In these watersheds, modeled confinement from 
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nationally available datasets appears to underestimate laterally unconfined valley 

settings to a greater degree than confined valley settings.  

 

Discussion 

Significance and current limitations 

Our analysis of valley bottom confinement across entire drainage networks provides 

a coherent, relatively rapid assessment of valley setting. This is not the first large-

extent assessment of valley setting presented at a network scale (e.g., Nagel, et al., 

2014; Roux, et al., 2015), but it is the first to use and validate the discriminating 

definitions of confinement that account for channel position on the valley floor and 

quantify lengths of channel margin that are in contact with confining margins. 

Previous attempts to quantify valley setting have emphasized the ratio of channel 

width to valley bottom width (e.g. Beechie and Imaki, 2014; Benda, et al., 2007). 

While such a ratio is useful in as far as it is dimensionless, we nevertheless see two 

important limitations. 

 

First, reliable and accurate measurements of channel width are not widely available 

and deriving them from remote sensing data requires high-resolution topography 

(e.g. LiDAR) or imagery without strong interference from vegetation (Notebaert and 

Piegay, 2013). Valley width is generally easier to derive than channel width across 

entire drainage networks, but it too is difficult to derive accurately. Even when 

applied with high-resolution datasets, accuracy of the width measurements remains 

an issue (Notebaert and Piegay, 2013). The calculation of a valley confinement 

proxy based on channel width to valley width ratio is therefore very sensitive to the 

accuracy of those measurements. While the method presented here relies on similar 
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input datasets (valley bottom and channel polygons, and network datasets), 

calculations are based on the length of the active channel margin that is confined, 

rather than channel width, making them less sensitive to the quality of mapping. 

Also, using spatial averaging eliminates problems with the imprecisions of polygon 

mapping of channels and valley bottoms. As shown here, modest improvements in 

accuracy can be achieved with more precise manual mapping of channel and valley 

margins.  

 

Second, and more fundamentally, width ratios can be misleading as they do not 

account for the influence of a confining margin on the behavior and lateral 

adjustment potential of a channel on its valley bottom. Such ratios fail to consider or 

discriminate the position of the channel on the valley bottom and its interaction with a 

confining margin. For example, Figure 1A shows that using Equation 1 to calculate 

confinement results in a literal measure of the river’s imposed condition, whereas the 

CW:VBW ratio is a probabilistic estimate that confinement is likely to occur. As a 

result, similar or identical CW:VBW scenarios could apply to (or fail to differentiate) a 

range of valley settings when analyzed at the reach scale. This is because Equation 

1 requires the length of active channel margin contact as an input to calculate 

confinement, whereas a CW:VBW ratio does not.  

 

As the Confinement Tool relies on length measures, it is inherently sensitive to the 

segment length (𝐶𝐿𝑇) over which it is calculated (cf. Church, 1996; Reinfelds, et al., 

2004). Our sensitivity to segment length exercise showed that gross over- or 

underestimation of confinement can be avoided by selecting a segment length that is 

similar to natural confluence-to-confluence nodes in a given catchment. This held 
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true in our four case study watersheds, but could potentially yield different results 

given different stream pattern and drainage density configurations. 

 

As determination of 𝐶𝐿𝑇 as outlined in this paper is left to the user, any applications 

of the Confinement Tool require an explicit statement regarding the scale at which 

the analysis has been conducted and the resolution of the data used. The analysis 

presented here applies a uniform 𝐶𝐿𝑇 across the entire drainage network. While we 

conduct a sensitivity analysis to help inform a choice of a constant 𝐶𝐿𝑇, this is not the 

only way to approach the problem. For example, the user could manually or 

systematically vary 𝐶𝐿𝑇 across the drainage network, perhaps derived as a function 

of drainage area or stream order. Alternatively, a multi-scalar approach could 

perform the calculations at each node over a range of possible polyline segment 

lengths and then combine them to estimate a value, or distribution of values. In a 

related manner, Notebaert and Piegay (2013) presented a technique for calculating 

measures of floodplain width and aggregating them over various longitudinal length 

scales. Similarly, the Roux, et al. (2014) Fluvial Corridor Tool relies on what they 

define as unitary graphic objects (or valley bottom cells), which have a variable 

length scale that is derived adaptively from network measures calculated over a 

range of length scales. There is significant scope to adaptively segment a drainage 

network to a variable 𝐶𝐿𝑇, based on natural breaks in the data.  

 

While our analysis using coarse-resolution inputs to derive valley bottoms and 

channel margins does not produce perfect results, the 500 m segment length applied 

here derives results that are 90 ± 5% accurate and came from freely, nationally 

available data. Moreover, the difference between modeled and EMC rests mostly 
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with the map resolution and quality of input products, and the effort to combine the 

two methods. Using digitized streams with 10m derived valley bottom resolution 

does not appear to improve the accuracy of the results using the modeling approach 

(Figure 13). While the manually digitized and calculated EMC results are generally 

more accurate, manual digitizing at the network scale at broad scales could be a 

prohibitively time-consuming process. Hence, we are significantly encouraged by the 

tool’s performance, even where it gets it ‘wrong’. The ‘wrong answer for the right 

reasons’ is perfectly acceptable (e.g. the mapped channel position is wrong), 

particularly when applying the approach across drainage networks. In most cases, 

the predictions are only falling short in locations where the input data are locally 

inaccurate on account of coarse input datasets. This most commonly occurs where 

the channel centerline or valley margin is positioned incorrectly (e.g., Figures 6A and 

B). This is not a shortcoming of the model, but rather a limitation of the input data 

(Macfarlane, et al., 2015).This should not deter users from leveraging available, 

coarse-resolution inputs (e.g. 10m DEMs) as an entry-level analysis for reach-scale 

river typing across entire drainage networks (Lisenby and Fryirs, 2017). Instead of 

waiting for technology to provide the answer, fundamental geomorphic insights can 

already be achieved using data that are already available. Moreover, as HRT 

becomes more available, it is wise to ensure we have the right conceptual 

frameworks in place, are measuring the right things, and refining and developing our 

workflows on datasets that are easy to work with. 

 

Examples of Applications of the Confinement Tool 

The Confinement Tool developed in this paper can support automated watershed-

wide analyses of valley bottom confinement in a repeatable and consistent manner. 
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Numerous scientific and management applications emerge from this work. For 

example, the tool can support regional-scale analyses of controls upon river diversity 

and morphodynamics (cf., Bizzi, et al., 2018; Demarchi, et al., 2017). Figure 14 

demonstrates variability in valley setting across the four watersheds analyzed in this 

study. Such images not only provide communication aids that draw attention to 

landscape patterns, they also provide quantitative insights into the make-up of each 

watershed. This variability can be explained in relation to the geologic and 

physiographic factors outlined in Table 3. In summary terms, the proportion of 

confined valley settings (36-48%) is far greater than the proportion of laterally 

unconfined valley settings (8-17%) in the Middle Fork John Day and Tucannon 

Watersheds (Figures14B and C) as the underlying basalt induces high relief terrain 

with a high drainage density. In contrast, the proportion of laterally unconfined 

valleys (25-33% of all streams) is far higher in the Grande Ronde and Upper Salmon 

Watersheds (Figures 14A and D), associated with lower-relief terrain and attributes 

of Quaternary landscape history (outwash plains are prominent in the latter 

instance). Such analyses also draw attention to the prominence of partly confined 

valley settings, the proportion of which ranges from 33-55% of all streams. This 

provides a first-order approximation of the capacity for lateral adjustment of differing 

sections of river course. 

 

As another example, the Confinement Tool can provide helpful complementary 

insights into controls upon watershed-scale patterns of rivers, accompanying 

analysis of slope along the longitudinal profile and downstream changes in stream 

power (see Figure 15)(Bizzi and Lerner, 2015; Reinfelds, et al., 2004). Historically, 

such analyses have emphasized variability in total stream power, but increasing 
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refinement in our analyses of the width of the active valley bottom and channel width 

will support much more powerful insights into broad-scale patterns of unit stream 

power. In a related manner, further work is required to analyze forms and patterns of 

lateral constraints upon channel adjustment. The distribution and type of constraint 

at ‘active channel margins’ influences the pattern and rate of sediment and wood 

from eroding banks, providing insight into local, reach, and watershed-scale controls 

upon the character and behavior of the river. This would support analyses of controls 

upon channel constrictions and appraisals of impacts of anthropogenic structures 

upon river morphodynamics, including artificial levees, embanked road and rail lines 

and river rehabilitation structures. As presented here, inputs can be manually 

manipulated to classify CV, CVB, and CA separately, but as yet the Confinement Tool 

has not been fully automated to generate such outputs. Potentially, such analyses 

could further aid interpretations of fluvial landscapes. 

 

 

Conclusion 

Measuring and mapping valley bottom confinement across entire drainage networks 

is a critical step toward describing and discriminating valley settings across broad 

spatial scales. In this follow up research article to the ESEX letter presented by 

Fryirs, et al. (2016), we present an approach for measuring confinement across 

watersheds using nationally available base map layers of intermediate resolution. 

Our approach builds on, but diverges from, previous developments (e.g., channel 

width to valley bottom width ratios) to discriminate valley settings by accounting for 

channel position on the valley bottom and lengths of channel that interact with 
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potential confining margins.This method for calculating confinement demonstrates 

the potential for rapid, consistent, assessment of large areas using coarse-resolution 

products with a reasonable degree of accuracy. Such assessment provides a basis 

for a wide range of morphometric analyses and applications in geomorphology. 
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Table 1 - Examples of freely available datasets with nationwide coverage that could 
be used to derive valley bottom margin input (e.g. DEMs) and channel margin inputs 
(e.g. drainage network) from which confinement can be calculated. List is non-
exhaustive.   

Country Digital Elevation Models (DEMs) Drainage Network 

Australia National Elevation Data Framework (NEDF) 
 
5 m resolution DEM: http://www.ga.gov.au/scientific-
topics/national-location-information/digital-elevation-
data#heading-2 

The National Surface Hydrology 
Database:  
 
http://www.ga.gov.au/scientific-
topics/national-location-
information/national-surface-
water-information 

Canada The Canadian Digital Elevation Model (CDEM)  
 
0.75 arc seconds resolution DEM (c. 22 m)* : 
http://maps.canada.ca/czs/index-en.html 

Canadian National Hydro Network 
(NHN):  
 
http://maps.canada.ca/czs/index-
en.html 

New 
Zealand 

Land Information New Zealand (LINZ)  
 
8 m resolution DEM: https://data.linz.govt.nz/layer/51768-nz-
8m-digital-elevation-model-2012/ 

Land Information New Zealand 
(LINZ) Hydrographic Data:  
 
https://www.linz.govt.nz/data/linz-
data/hydrographic-data 

Spain Spanish National Geographic Institute : 5 m resolution DEM; 
http://contenido.ign.es/csw-
inspire/srv/spa/main.home?uuid=spaignMDT05201307180727 

 

United 
Kingdom 

Ordnance Survey (OS), Great Britain OS  
 
Terrain 5 DTM: https://data.gov.uk/dataset/os-terrain-5-dtm 

United Kingdom Hydrographic 
Office (UKHO) 

United 
States of 
America 

National Elevation Dataset (NED) 10 m resolution DEM: 
https://nationalmap.gov/elevation.html 

National Hydrologic Datastet 
(NHD) 1:24K Cartographic 
Network (cartographic is desirable 
to NHD+ hydrographic): 
https://nhd.usgs.gov/ 

 

http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data#heading-2
http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data#heading-2
http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data#heading-2
http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data#heading-2
http://www.ga.gov.au/scientific-topics/national-location-information/national-surface-water-information
http://www.ga.gov.au/scientific-topics/national-location-information/national-surface-water-information
http://maps.canada.ca/czs/index-en.html
http://maps.canada.ca/czs/index-en.html
http://maps.canada.ca/czs/index-en.html
http://maps.canada.ca/czs/index-en.html
http://maps.canada.ca/czs/index-en.html
https://data.linz.govt.nz/layer/51768-nz-8m-digital-elevation-model-2012/
https://data.linz.govt.nz/layer/51768-nz-8m-digital-elevation-model-2012/
https://www.linz.govt.nz/data/linz-data/hydrographic-data
http://contenido.ign.es/csw-inspire/srv/spa/main.home?uuid=spaignMDT05201307180727
http://contenido.ign.es/csw-inspire/srv/spa/main.home?uuid=spaignMDT05201307180727
https://data.gov.uk/dataset/os-terrain-5-dtm
https://data.gov.uk/dataset/os-terrain-5-dtm
https://data.gov.uk/publisher/united-kingdom-hydrographic-office
https://data.gov.uk/publisher/united-kingdom-hydrographic-office
https://nationalmap.gov/elevation.html
https://nhd.usgs.gov/
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Table 2. Measures of valley margin and valley bottom confinement used to 
discriminate valley settings and first order river types (modified from Fryirs et al., 
2016). Note: this does not cover all river types or all possible combinations within 
ranges. See Fryirs and Brierley (2018) for examples of these river types and names. 

Valley setting (river type) Valley margin 
confinement 
(CV) 

Valley bottom 
confinement (CVB) 

Dominant 
confining 
medium 

Confined rivers 

Confined (e.g. bedrock 
margin-controlled, gorge, 
boulder bed) 

CV =100% CVB = 100% Bedrock 

Confined (e.g. bedrock 
margin-controlled, 
occasional floodplain 
pockets, boulder bed) 

CV ≥ 85% CVB ≥ 85% Bedrock 

Confined valley (terrace 
margin-controlled, cobble 
bed) 

CV ≤ 10% CVB ≥ 85% Terrace 

Partly confined, margin-controlled rivers 

Partly confined (e.g. 
bedrock margin-controlled, 
discontinuous floodplain, 
gravel bed) 

CV = 50-85% CVB ≥ 50-85% Bedrock 

Partly confined (e.g. fan 
margin-controlled, 
discontinuous floodplain, 
gravel bed) 

CV = 50-85% CVB ≥ 50-85% Fan 

Partly confined, planform-controlled rivers 

Partly confined (e.g. 
planform-controlled, low 
sinuosity, discontinuous 
floodplain, gravel bed) 

CV = 10-50% CVB =10-50% Bedrock 

Partly confined (e.g. 
planform-controlled, low 
sinuosity, fan constrained, 
discontinuous floodplain, 
gravel bed) 

CV = 10-50% CVB = 10-50% Fan 

Laterally unconfined rivers 

Laterally unconfined (e.g. 
continuous channel, 
meandering, sand bed) 

CV ≤ 10% CVB ≤ 10% None 

Laterally unconfined (e.g. 
discontinuous channel, 
valley fill, fine grained) 

CV = 0% (no 
channel) 

CVB = 0% (no 
channel) 

 

Anthropogenically controlled or constrained rivers 

Confined or partly 
confined (e.g. stopbank 
margin-controlled, or 

Any range 
(CA> CV) 
Where CA = 

Any range (CA> 
CVB) 
Where CA = 
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constrained) anthropogenic 
margin 

anthropogenic 
margin 
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Table 3. Primary physiographic attributes of study watersheds. See Figure 4 for 
ecoregions. 
Watershed Area 

(km2) 
Length of 
Perennial 
Streams 

(km) 

Relief 
(m) 

Dominant Lithologies Ecoregions 

Middle Fork 
John Day, 
Oregon 

2052 4110 1615 

Tertiary volcanics, 
Columbia River Basalt 
group, metasedimentary 
marine rocks 

Uplands, highlands, 
mélange, mesic forests, 
subalpine-alpine 

Grand 
Ronde, 
Oregon 

4238 3402 1933 

Tertiary volcanics, 
Columbia River Basalt 
group. 

Maritime, mountainous, 
canyons and dissected 
highlands, continental 
foothills, mountain 
basins, mesic forests, 
subalpine-alpine 

Tucannon, 
Washington 

1302 1108 1778 

Tertiary volcanics, 
Columbia River Basalt 
group 

Loess, dissected loess 
uplands, deep loess 
foothills, maritime, 
canyons and dissected 
highlands, mesic forests 

Upper 
Salmon, 
Idaho 928 731 

1396 
 

Dominantly granitics, with 
smaller regions of 
sedimentary (limestone and 
sandstone) and volcanic 
rocks  

Uplands, high glacial 
drift valleys, batholith, 
forested mountains 

TOTAL 8520 9351 NA NA NA 
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Table 4. Percent stream length reported in valley bottom confinement categories 
using EMC, and modeled techniques in the Upper Salmon watershed. Note: both 
manual and modeled outputs were analyzed on the same perennial network extent 
segmented at 500 m. 

Analysis Total 
stream 
length 
(km) 

Valley setting (% total stream length) 

  Laterally 
unconfined 

Partly  
confined, 
planform- 
controlled 

Partly 
confined, 
margin- 

controlled 

Confined 

Manual 
(EMC)  

729 42% (306 km) 9% (66 km) 19% (139 km) 30% (219 km) 

Modeled 729 31% (226 km) 19% (139 km) 22% (160 km) 28% (204 km) 

Difference 0 -11% (80 km) +10% (73 km) +3% (22 km) -2% (15 km) 

      

   Lumped (all partly confined)  

Manual 
(EMC)  

729 42% (306 km) 28% (205 km) 30% (219 km) 

Modeled 729 31% (226 km) 41% (299 km) 28% (204 km) 

Difference 0 -11% (80 km) +13% (95 km) -2% (15 km) 
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Table 5. Impact of basemap resolution on confinement values (summarized into 
categories) calculated for the mainstem Tucannon River using 1-m and 10-m DEMs, 
both datasets were segmented at 500 m.  Percent differences reflect the degree to 
which the coarser 10 m DEMs over-predict a class where positive, and under-predict 
where negative. 

Base DEM 
resolution 

Total 
stream 
length 
(km) 

Valley Setting Categories 
(% total stream length) 

  Laterally 
unconfined 

Partly  
confined, 
planform- 
controlled  

Partly 
confined, 
margin- 
controlled  

Confined 

1-m LiDAR 156 50% (78km) 28% (44 km) 14% (22 km) 8% (12 km) 

10-m NED 118 33% (39 km) 35% (41 km) 18% (21 km) 14% (17 km) 

Difference  -38 -17% (-39 km) +7% (3 km) +4% (1 km) +6% (5 km) 

      

  Laterally 
unconfined 

Partly confined Confined 

1-m LiDAR 156 50% (78km) 42% (66 km) 8% (12 km) 

10-m NED 118 33% (39 km) 53% (62 km) 14% (17 km) 

Difference  -38 -17% (-39 km) +11% (3 km) +6% (5 km) 
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Figure 1. (A) Comparison of confinement calculated as a ratio of channel width to 

valley bottom width (CW:VBW). Scenarios 1-3 have identical valley bottom 

dimensions and channel widths, but differing channel lengths and channel contact 

with active confining margins. Calculations result in a single value of CW:VBW but 

three measures of confinement that help differentiate confined, partly confined and 

laterally unconfined valley settings; (B) Examples of various types of confinement 

that can be calculated with prepared potential confinement margin polygons as 

inputs to the Confinement Tool: (1) valley bottom, (2) valley, and (3) anthropogenic 

confinement.  
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Figure 2. Illustration of transitions across contrasting valley settings along a 

continuum of valley bottom confinement. Decreasing contact between the channel 

and the valley bottom margin (from left to right) results in progressively less active 

confining margin (pink). Modified from Fryirs and Brierley (2010). 
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Figure 3. Illustration of workflow for confinement calculation for an individual 

drainage network segment. 
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Figure 4. Location of four study watersheds within the interior Columbia River Basin 

in the Pacific Northwest United States. Underlying hillshade and Level 4 ecoregions 

(Omernik and Griffith, 2014; Thorson, et al., 2003) illustrate the physiographic 

diversity of these four watersheds. 
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Figure 5. An example illustration from 4th of July Creek in the Upper Salmon 

watershed (Idaho, USA) showing the sensitivity of confinement calculations 

(illustrated categorically) relative to the length of network segmentation. When 

uniformly segmented, shorter segment lengths (i.e. 𝐶𝐿𝑇) still exist between tributary 

junctions, but the uniform segmentation length (e.g. 250, 500, 1000, 1500 or 2500 m) 
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represents the maximum segment length. (A) Delineated confinement values with 

variable segmentation length based on manual segmentation at expert-identified 

reach breaks. (B – F) Contrasting confinement values when confinement is 

calculated with different maximum segment lengths (i.e.𝐶𝐿𝑇) specified. 
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Figure 6. Distribution of randomly selected reaches comprising equal numbers (n 

~50) of valley settings (laterally unconfined; partly confined, planform-controlled, 

partly confined; partly confined, margin-controlled; and confined) in the Upper 

Salmon watershed, Idaho. Bar plot shows percentages of each confinement 

category in the dataset (n = 207) when digitized streamlines are used as an input for 

the tool. Inset photographs show channel planforms depicted by NHD streamline and 

by manually measured and digitized techniques. (A) Partly confined reaches on 4th of 

July Creek; (B) Laterally unconfined valley in lower Smiley Creek.  
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Figure 7. Comparison of valley bottom (VB) confinement calculated in the Upper 

Salmon watershed by (A) manually derived, categorical VB confinement (EMC); and 

(B) modeled using the Confinement Tool. Both use an NHD stream network 

segmented at 500 m lengths. 
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Figure 8. Categorical EMC and modeled confinement in the Upper Salmon 

watershed, showing the entire network segmented at each interval (stated segment 

length plus all shorter lengths forced by node-to-node NHD structure). A and B are 

percent stream length vs confinement per NHD network segmented at various 

lengths; C is frequency of total segments that fall within the broad confinement 

ranges, for various intervals.  

  



 

 

This article is protected by copyright. All rights reserved. 

 

Figure 9. Frequency distribution and percentage of segment lengths from NHD 

drainage networks in the four study watersheds. (A) Upper Salmon; (B) Middle Fork 

John Day; (C) Tucannon; and (D) Upper Grande Ronde.   
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Figure 10. Box plot for Upper Salmon watershed, showing distribution of modeled 

confinement values (i.e. Figure 8B segmented at 500 m) broken out by manually 

classified valley settings (i.e. Figure 8A).  
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Figure 11. Percent confinement versus total stream length for 207 randomly selected 

reaches in the Upper Salmon watershed. Confinement estimates are contrasted for 

(a) manually digitized planforms and confining margins (EMC) (black); (b) digitized 

planforms used as model input (red), and (c) standard model output with stream 

reaches segmented at 500 m (grey).  
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Figure 12. Distribution of difference between manually digitized planform and 

confining margins (EMC) and modeled confinement (500 m segments). Inset shows 

regression of values using “jitter plot” output where end-member unconfined (“0%”) 

and confined (“100%”) data are shown tightly clustered rather than stacked to ensure 

that confinement values equal to 0 and 1 are discernible from a single point at each 

end.  
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Figure 13. Confinement calculated using LiDAR versus 10m DEM in a confined 

valley setting (A and B, respectively), and in a partly confined valley setting (C and 

D, respectively).  
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Figure 14. Basin-wide confinement for the four study watersheds of the interior 

Columbia River Basin (A) Grande Ronde; (B) Tucannon; (C) Middle Fork John Day 

and (D) Upper Salmon. Bar plots show percentage of confinement in each valley 

setting. 
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Figure 15. Example of a stacked-profile plot for the mainstem of Middle Fork John 

Day River showing downstream relationship between valley bottom confinement 

(bottom) and conventional approaches to analysis of controls upon patterns of river 

morphodynamics (gross stream power, longitudinal profile, and drainage area). 

 

 

 


