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Doppler cooling of a Coulomb crystal
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We study theoretically Doppler laser cooling of a cluster of two-level atoms confined in a linear ion trap.
Using several consecutive steps of averaging we derive, from the full quantum-mechanical master equation, an
equation for the total mechanical energy of a one-dimensional crystal, defined on a coarse-grained energy scale
whose grid size is smaller than the linewidth of the electronic transition. This equation describes the cooling
dynamics for an arbitrary number of ions in the quantum regime. We discuss the validity of the ergodic
assumption~i.e., that the phase-space distribution is only a function of energy!. From our equation we derive
the semiclassical limit~i.e., when the mechanical motion can be treated classically! and the Lamb-Dicke limit
~i.e., when the size of the mechanical wave function is much smaller than the laser wavelength!. We find a
Fokker-Planck equation for the total mechanical energy of the system, whose solution is in agreement with
previous analytical calculations that were based on different assumptions and valid only in their specific
regimes. Finally, in the classical limit we derive an analytic expression for the average coupling, by light
scattering, between motional states at different energies.
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I. INTRODUCTION

The development of laser cooling and trapping techniq
in recent decades has allowed for many spectacular ex
mental achievements@1#. Hand in hand with the experimen
tal work, the theory of laser cooling has been widely dev
oped, providing a precise description of many experimen
situations@2,3#. Yet the great majority of the theoretical stu
ies have dealt with the interaction of laser light with sing
particles~which are the same as many non-interacting p
ticles!. The treatment of a many-body system coupled
light is considerably more complex, due to the large num
of degrees of freedom that results from the interaction am
the constituents of the system.

In this work we investigate laser cooling of a many-bo
system, taking as a representative—and experimen
relevant—example a Coulomb cluster, i.e., a crystalliz
structure of ions which are trapped in a Paul or Penning
@4–7#. We develop a model for the dynamical behavior
the crystal’s mechanical energy. In this system the phys
processes in play are the trapping potential that confines
ions, their mutual Coulomb interaction, and their interact
with the laser light. For sufficiently small kinetic energy th
motion of the ions is properly described by the collecti
excitations of the cluster, the so-called normal modes of
crystal, due to the interplay of trapping potential and Co
lomb repulsion. The problem is then characterized by th
main frequency scales:~i! the oscillation frequencies of thes
modes, which are determined by the trap frequencyn and the
number of particleN ~for ions of equal mass and charge!; ~ii !
the recoil frequencyvR characterizing the exchange of m
chanical energy between radiation and atoms,vR
52p2\/ml2, with m the mass of the ions andl the wave-
length of the light coupling quasiresonantly to the electro
transition, and~iii ! the linewidth of the electronic transition
g, which characterizes the rate at which photons are s
tered by the atoms. Doppler cooling of particles in a h
1050-2947/2001/64~6!/063407~16!/$20.00 64 0634
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The theory is well developed for single trapped partic

in specific regimes: in the semiclassical limitg@n,vR ,
when the mechanical motion can be treated classically,
in the Lamb-Dicke limitn@vR , when the size of the mo
tional wave function is much smaller than the laser wa
length @3#. In the semiclassical case, the standard proced
consists in writing the equations for the system dynamics
the Wigner representation, adiabatically eliminating the
cited electronic state, and then expanding in\ up to the
second order. In this way a Fokker-Planck equation in
position and the velocity of the ion is derived@9#. In the
Lamb-Dicke limit, corresponding to an expansion invR /n
up to the first order, the cooling dynamics are described b
set of rate equations projected on the electronic ground s
and on the eigenstates of the motion, which can be ana
cally handled@3,8#. Both treatments yield in the limitg@n
the same final distribution of cooled atoms in energy spa
and the same dependence of the final temperature on
cooling parameters. Our approach shows how they are
cial cases of the same equation that we derive for the
chanical energy of the crystal.

The presence of many mutually interacting particles co
plicates the treatment considerably, because the mecha
Hamiltonian, having an increased number of degrees of fr
dom, often does not allow for a simple and transparent so
tion. An immediately visible effect arises in the spectrum
the mechanical energy, where the increased number of
grees of freedom is in general connected with the appeara
of quasidegeneracies and with a dense distribution of
energy levels@10#. The situation is facilitated again if on
restricts the treatment to the Lamb-Dicke regime@11,12# but
in the more general case we want to discuss different step
simplification can be made as will be shown.

The treatment in this paper focuses on Doppler cooling
an N-body one-dimensional Coulomb crystal, in particula
on the type of linear ion chain obtained in linear Paul tra
©2001 The American Physical Society07-1
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GIOVANNA MORIGI AND JÜRGEN ESCHNER PHYSICAL REVIEW A64 063407
@7,13#. Here, the many-body mechanical Hamiltonian can
approximated by a set of harmonic oscillator modes, all h
ing different frequenciesn1 , . . . ,nN , where each mode cor
responds to a collective excitation of the crystal. Since
Doppler cooling the rate of photon scattering, and thus
cooling dynamics, is determined byg, we define an energy
grid of width DE!\g and study the cooling dynamic
among the energy shells defined by the grid. From this st
ing point, with a procedure of successive averaging we
rive a rate equation for the population at each motional
ergy on the grid. From this result, the semiclassical limit
recovered by expanding invR /g. In particular, we get a
Fokker-Planck equation for the motional energy describ
cooling of N ions, whose solution agrees with those of sta
dard semiclassical treatments@9,12,14,15#. In the Lamb-
Dicke regime, starting from the full master equation, we d
cuss the conditions under which a compact equation
cooling can be found. Finally, we derive an explicit form
the rate equation in the limitg@n by evaluating an analytic
expression for the average coupling by light scattering
tween motional states at different energies.

Although we restrict the investigation to a on
dimensional Coulomb crystal, the theory can be directly
tended to three dimensions, and the results are applicab
clusters in both Paul and Penning traps. In general, the
behind our treatment is that—in incoherent processes—if
rate determining the dynamics of interest of the system
be singled out, the contribution of processes occurring
faster time scales is often well represented by the ave
value on the slower time scale, characterizing the incohe
process.

This work is organized as follows. In Sec. II the mod
from which our derivation starts is introduced and discuss
In Sec. III we discuss and apply a series of approximatio
from which we obtain an equation for the cluster’s mecha
cal energy describing cooling of the crystal. In Sec. IV w
study the equation in the Lamb-Dicke and semiclassical l
its, and we compare our results with those obtained in
same limits with other treatments. In Sec. V we derive
explicit functional form of the rate equation in the limitg
@n. Finally, we draw our conclusions.

II. MODEL

In this section we introduce the model that we stu
throughout the paper. We first discuss the mechanical p
erties of a one-dimensional Coulomb crystal, then the in
action of laser light with the internal electronic transition
each ion, and finally the mechanical action of the light on
collective mechanical degrees of freedom of the crystal.

A. Mechanical properties

The mechanical potential on an ion cloud in a Paul trap
the sum of the potential exerted by the trap on each ion
of the Coulomb repulsion among the ions. Sufficiently
away from the trap electrodes, the potential of a Paul trap
be considered harmonic and the total potential forN ions of
chargee has the form
06340
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V5(
j 51

N
1

2
~u0x

j xj
21u0y

j y j
21u0z

j zj
2!1

1

2 (
j 51

N

(
k51,kÞ j

N
e2/4pe0

urW j2rWku
,

~1!

whererW j5(xj ,yj ,zj ) is the position of ionj andu0x
j ,u0y

j ,u0z
j

depend on the trap parameters and on the mass of thej th ion.
At sufficiently low temperatures the ions crystallize arou
the classical equilibrium positionsrW i

(0) which are solutions of

the set of equations]V/]rW i urW
i
(0)50 @4#. Sufficiently below the

crystallization temperature the motion of the ions arou
these equilibrium points is harmonic to good approximatio
In this limit, the total mechanical potential can be describ
by its Taylor series truncated at the second order in the
pansion around$rW i

(0)%. In a Paul trap with cylindrical geom

etry and very steep potential in the radial (x̂ andŷ) direction
the ions crystallize along the trap (ẑ) axis. In this regime the
amplitude of the radial oscillations is much smaller than
axial ones. Here, we assume the radial degrees of freedo
be frozen out such that the motion is one dimensional al
the ẑ axis, and we take the axial potential to be electrosta
as is the case in a linear Paul trap@13#. Then the truncated
mechanical potential has the form

V~q1 , . . . ,qN!5
1

2 (
j ,k51

N

Vjkqjqk , ~2!

whereVjk is a real, symmetric, and non-negative matrix~the
explicit form of its elements can be found, for example,
@16#!, while qj5zj2zj

(0) are the displacements from th
equilibrium positionszj

(0) . Given m, the mass of each ion
the secular equation for the harmonic motion of the crys
has the form

(
j

Vi j bj
a5mna

2bi
a with a51, . . . ,N, ~3!

wherena are the eigenvalues andbj
a the associated eigen

vectors, which are complete and orthonormal.
In the coordinatesqa85( ibi

aqi the motion is described by
the Lagrangian forN independent harmonic oscillators o
frequencyna . Given the canonical momentumpa85q̇a8 con-
jugate to qa8 , the motion is quantized by associating
quantum-mechanical oscillator with each mode. Denoting
aa and aa

† the annihilation and creation operators for t
modea, respectively, the coordinatesqi are now written as

qi5(
a

~b21! i
aA \

2mna
~aa1aa

† !, ~4!

and the Hamiltonian for the mechanical motion has the fo

Hmec5(
a

\naS aa
†aa1

1

2D . ~5!

The energy eigenstates of each modea are the number state
una& with eigenvalues ~energies! Ena

5\(na1 1
2 )na .
7-2
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DOPPLER COOLING OF A COULOMB CRYSTAL PHYSICAL REVIEW A64 063407
In the following we use statesun&5un1 ,n2 , . . . ,nN& to de-
scribe the eigenstates of the motion of the crystal co
sponding to the eigenvaluesEn5(aEna

.

In summary,N trapped ions crystallized in one dimensio
can be described byN harmonic oscillators with frequencie
n1 , . . . ,nN . These frequencies are solutions of Eq.~3! and,
what is important, they are incommensurate. Therefore
spectrum of mechanical energies of the system does no
hibit the discreteness and equispacing property of the si
harmonic oscillator spectrum, but shows a dense distribu
of levels, and at sufficiently high energies and largeN it
assumes a quasicontinuum character. In this limit we
define the density of states of the system,g(E), which is a
smooth function of the energy and is defined on a grid
energiesDE, such that the number of statesD(E) contained
in the intervalF(E)5@E2DE/2,E1DE/2# is much larger
than 1, andD(E).g(E)DE. For N modes~ions! g(E) can
be evaluated by solving the following integral:

g~E!5
1

~\n1!~\n2!•••~\nN!

3
d

dEE0

E

dE1E
0

E1
dE2•••E

0

EN21
dEN

5
EN21

~N21!! ~\n1!~\n2!•••~\nN!
, ~6!

i.e., by taking the derivative of the ratio between the volu
in phase space of energy<E and the volume occupied by
single state, (\n1)(\n2)•••(\nN). In Fig. 1 we plot the
number of states as a function of the total mechanical ene
for a chain of three ions, taking a gridDE5\n1/5, and com-
pare the exact value with the smoothed functiong(E)DE,
with g(E) given by Eq.~6!.

FIG. 1. Number of statesD(E) as a function of the total energ
E/\n evaluated for three ions on a gridDE5\n/5 ~dots joined by
the gray line!; smoothed functiong(E)DE of Eq. ~6! with N53
~black line!. The frequencies of the modes aren15n, n2

51.7321n, andn352.4083n.
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B. Interaction with light

We consider that laser light with frequencyvL and wave
vector kW5(kx ,ky ,kz) drives some ions of the crystal, cou
pling to their internal two-level transition with electroni
ground stateug&, excited stateue&, and resonance frequenc
v0. In the rotating wave approximation and in the fram
rotating with the laser frequency, the total Hamiltonian h
the form

H5Hat1Hmec1HAL . ~7!

HereHat is the Hamiltionian for the internal degrees of fre
dom, defined as

Hat52\d(
j 51

N

ue& j^eu, ~8!

where d5vL2v0 is the detuning of the laser from th
atomic resonance andj labels the ions.Hmec is the mechani-
cal Hamiltonian defined in Eq.~5!, and HAL describes the
interaction between laser and atoms,

HAL5\(
$ j %

V~zj !

2
@s j

1e2 ikzzj1s j
2eikzzj #, ~9!

whereV(zj ) is the Rabi frequency at the positionzj , s j
1 ,

ands j
2 are the raising and lowering dipole operators, resp

tively, for the internal state of thej th ion, and$j% is the set of
driven ions. Assuming that the light intensity does not va
rapidly in the vicinity of zj

(0) , we can approximateV(zj )
'V(zj

(0))5V j . The operatore2 ikzzj in Eq. ~9! represents
the mechanical effect of the light interaction, i.e., a shift
momentum space by one photon recoil which goes al
with the excitation. Using Eq.~4!, its explicit form is

exp~2 ikzzj !5expS 2 ikzzj
(0)2 i (

a51

N

h j
a~aa

†1aa!D ,

~10!

whereh j
a is the Lamb-Dicke parameter for modea and ion

j, defined as@17#

h j
a5kz~b21! j

aA \

2mna
. ~11!

For some ions we can haveV j50, which means that not al
ions of the chain are driven. This condition can be achiev
either when the ions are sufficiently spaced to allow for th
individual addressing@18#, or by introducing a different type
of ion into the crystal, such as an isotope of the trapp
element@19# or a different species@17,20# whose transition
frequency is not resonant with the laser. In this case, so
differences in the mechanical behavior arise, which, ho
ever, are not relevant for the results that we derive below
7-3
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C. Master equation

We describe the dynamics of the driven crystal throu
the master equation for the density matrixr of the N-ion
system:

d

dt
r52

i

\
@H,r#1L~r!, ~12!

whereH has been defined in Eq.~7!, andL is the Liouvillian
describing the incoherent evolution of the system due to c
pling of the ion’s electronic transition to the modes of t
electromagnetic field:

L~r!5
g

2 (
j 51

N

@2s j
2r̃ js j

12s j
1s j

2r2rs j
1s j

2#. ~13!

Here g is the decay rate of the internal excited statesue& j ,
and r̃ j is the density matrix describing the feeding for t
th

th

d

-
v-

06340
h

u-

ions j, shifted in momentum space by the recoil of the spo
taneously emitted photon,

r̃ j5E
21

1

d~cosu!N~cosu!eik cosuzjre2 ik cosuzj , ~14!

with N(cosu) being the dipole pattern of the spontaneo
decay, andk5ukW u.

D. Low saturation limit

In the limit of low saturation,V!g, the excited states
ue& j can be eliminated from Eq.~12! in second order pertur
bation theory@21#. Thereby we obtain a closed equation f
the internal ground stateug&5) j 51

N ug& j , which we project
on the basis of mechanical statesun&. The equations describ
ing the evolution of this system are@10#
d

dt
^nurum&52

i

\
~En2Em!^nurum&1 i(

$ j %

V j
2

4 (
k,l

F ^nueikzzj uk&^kue2 ikzzj u l&
~Ek2El!/\2d2 ig/2

^ lurum&2
^ lueikzzj uk&^kue2 ikzzj um&

~Ek2El!/\2d1 ig/2
^nuru l&G

1g(
$ j %

V j
2

4 (
k,j ,r ,s

E
21

1

d~cosu!N~cosu!^nueik cosuzj uk&^kue2 ikzzj ur &^sueikzzj u j &^ j ue2 ik cosuzj um&^r urus&

3F 1

@~Ej2Es2Ek1Er !/\1 ig#@~Ej2Es!/\2d2 ig/2#
1

1

@~Ek2Er2Ej1Es!/\2 ig#@~Ek2Er !/\2d1 ig/2#G .
~15!
on
t it
pu-

des
Here, the coefficients describing the coupling among
populationŝ nurun& and the coherences^nurum& are propor-
tional to the Franck-Condon coefficients, which have
form

^ lue2 ikzj un&5 )
a51

N

^ l aue2 ih j
a(aa1aa

†)una&

5 )
a51

N

expS 2
h j

a2

2 DA r a!

~r a1u l a2nau!!

3~ ih j
a! u l a2nauLr a

u l a2nau
~h j

a2!, ~16!

wherer a5min(l a ,na), andLr a

u l a2nau(x) is a generalized La-

guerre polynomial. They represent the probability amplitu
of a transition from the initial motional stateun& to the final
motional stateu l& by absorption or emission of a photon.

III. AN ERGODIC EQUATION FOR LASER
COOLING

OF THE CRYSTAL

In the following, starting from the full quantum
mechanical equation~15! and using consecutive steps of a
e

e

e

eraging, we derive an equation for Doppler cooling of an i
crystal. This equation will be ergodic, in the sense tha
describes the dynamics of the system in terms of the po
lation P(E) at the crystal’s mechanical energyE.

In the Doppler cooling limit@which impliesg.na for all
a51, . . . ,N, andd5O(g)# we define a grid of energiesDE
such that in an intervalF(E)5@E2DE/2,E1DE/2# the

FIG. 2. Coarse-grained energy space for the case of two mo
of frequencyn1 ,n2. The points are the states with energyEn5En1

1En2
. The broad lines represent two energy shellsF(E) and

F(E8).
7-4
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number of statesD(E)@1, and the Lorentzian describing th
resonant response of the atom varies infinitesimally on e
interval. The resulting shells of energies can be visualized
shown in Fig. 2 for the case of a two-ion crystal, where ea
axis represents the energy of one mode, and each point
state un&5un1 ,n2&. Here, the states with total energyEn
PF(E) fall into the shell of widthDE along the lineE
5\n1(n11 1

2 )1\n2(n21 1
2 ).

We can now decompose the sums over the motional st
appearing in Eq.~15! as follows:
06340
ch
as
h
s a

es

(
k

5(
Ek

(
k

8 where (
k

8 [ (
k:EkPF(Ek)

, ~17!

where nowEk is one energy value on the grid, andF(Ek)
5@Ek2DE/2,Ek1DE/2# is the energy interval centered a
Ek with width DE. Using these definitions we rewrite th
equations for the populations in Eq.~15! and sum over all
states that lie within the same energy shellF(En):
sum in

tions and
t

d

dt ( 8
n

^nurun&52g(
$ j %

V j
2

4 (
Ek

1

@~Ek2En!/\2d#21g2/4
( 8
n,k

u^nueikzzj uk&u2^nurun& ~18!

2(
$ j %

V j
2

4 (
Ek ,El

ImH 1

~Ek2El!/\2d2 ig/2 (
n,k

8 (
l,lÞn

8^nueikzzj uk&^kue2 ikzzj u l&^ lurun&J ~19!

1g(
$ j %

V j
2

4 E
21

1

d~cosu!N~cosu! (
Ek ,Er

3F 1

@~Ek2Er !/\2d#21g2/4
(
n,k,r

8 u^nueik cosuzj uk&u2u^kue2 ikzzj ur &u2^r urur & ~20!

1 (
Ej ,Es

(
n,k,s

8 ( 8
r ,j

jÞk or rÞs

ReH ^nueik cosuzj uk&^kue2 ikzzj ur &^sueikzzj u j &^ j ue2 ik cosuzj un&
@~Ej2Es2Ek1Er !/\1 ig#@~Ej2Es!/\2d2 ig/2#

^r urus&J G , ~21!

where we have separated the terms involving the populations,~18! and ~20!, from the ones that involve the coherences,~19!
and~21!. We now compare the term~18!, the loss rate of the population, with the coupling to the coherences in~19!. Line ~18!
is proportional to the sum of moduli squared of Franck-Condon coefficients; thus it is the sum of positive terms. The
line ~19! adds up coefficients with alternating signs, as can be verified from Eq.~16!. For D(E)@1 we can therefore safely
assume that

(
$ j %

(
n

8 (
k

8 u^nueikzzj uk&u2^nurun&@U(
$ j %

( 8
n,k,lÞn

^nueikzzj uk&^kue2 ikzzj u l&^ lurun&U. ~22!

This is equivalent to a random phase approximation. On the basis of this consideration the coupling between popula
coherences in~19! may be neglected in comparison to the loss rate described by the term in~18!. Analogously, we can neglec
the terms in~21! in comparison with~20!, and we obtain the following set of rate equations:

d

dt (
n

8 ^nurun&52g
V2

4 (
$ j %

(
Ek

1

@~Ek2En!/\2d#21g2/4
(

n
8 ^nurun&(

k
8 u^nueikzzj uk&u2

1g
V2

4 (
$ j }

E
21

1

d~cosu!N~cosu! (
Ek ,Er

1

@~Ek2Er !/\2d#21g2/4

3(
r

8 ^r urur &(
k

8 u^kue2 ikzzj ur &u2(
n

8 u^nueik cosuzj uk&u2, ~23!
7-5
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GIOVANNA MORIGI AND JÜRGEN ESCHNER PHYSICAL REVIEW A64 063407
where all Rabi frequencies have been set equal,V j5V. This
simplifies the discussion in the next subsection, but the m
general case of differentV j can be treated with the sam
methods under conditions that will be discussed below.

A. Ergodic hypothesis

Equation ~23! describes how laser light couples to th
internal electronic transition and exchanges mechanical
ergy with the crystal. The probability amplitude for the r
diative event to occur is weighted by a Lorentzian distrib
tion, which below saturation has widthg, and which is a
function of the difference between the mechanical energ
of the crystal before and after the scattering. The mechan
effect of light on the motion of the crystal is described by t
operator~10!, and the probability for the crystal initially in
stateun& to be scattered into stateuk& by the absorption or
emission of a laser photon is given by the modulus squa
of the Franck-Condon coefficient, Eq.~16!. When we regard
the modulus squared of Eq.~16! as a distribution over the
statesuk& after an absorption or emission event, given t
initial stateun&, then the average motional energy transfer
to the ion cluster and its variance are calculated as~see Ap-
pendix A!

^Ek2En&k5(
k

~Ek2En!u^nueik cosuzj uk&u25\vR cos2 u,

~24!

^~Ek2En!2&k5\vR cos2 u
2En

N
1~\vR cos2 u!2, ~25!

wherevR5\k2/2m is the recoil energy. Thus, the first an
second moments of this distribution depend on the~single
06340
re
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ion! recoil energyvR and on the energy per ion of the initia
state, but not on the details of the quantum stateun&.

Guided by this result, we will now make the approxim
tion that in the limit of Doppler cooling,g.n j , and for
sufficiently large density of states,D(E)@1, the oscillations
of the Franck-Condon coefficients with the vibrational nu
bers play a negligible role, whereas the average prope
determine the cooling dynamics. We formulate this assum
tion by first introducing an average Franck-Condon coupl
between shells of energyEn andEk ,

Q(k)~En ,Ek!5
1

ND~En!D~Ek! (j 51

N

(
n

8 (
k

8 u^kue2 ikzj un&u2,

~26!

and then writing

1

N (
j 51

N

(
k

8 u^kue2 ikzj un&u2'D~Ek!Q(k)~En ,Ek!, ~27!

thereby neglecting the dependence of the left-hand s
~LHS! on the details of the stateun&. We will discuss this
assumption and possible alternatives in the next section
will be one of the important results later to determine
explicit expression forQ(k)(En ,Ek) in Eq. ~26!. Further-
more, in Eq.~27! all ions of the crystal are assumed to b
driven. In the next section we will discuss the case in wh
only a subset is driven.

Applying Eq. ~27! to Eq. ~23!, in the limit in which all
ions are driven, we obtain
ffect of
nother
d

dt (
n

8 ^nurun&

52Ng
V2

4 (
Ek

D~Ek!Q(kz)~En ,Ek!

@~Ek2En!/\2d#21g2/4
(

n
8 ^nurun&

1Ng
V2

4 E
21

1

d~cosu!N~cosu! (
Ek ,E

r

D~Ek!Q(kz)~Ek ,Er !D~En!Q(k cosu)~En ,Ek!

@~Ek2Er !/\2d#21g2/4
(

r
8 ^r urur &. ~28!

In order to obtain the second term on the RHS of Eq.~28! from the second term on the RHS of Eq.~23! we have made a
further approximation. First we write

(
j

u^kue2 ikzzj ur &u2u^nueik cosuzj uk&u25(
j

u^kue2 ikzzj ur &u2(
l

u^nueik cosuzluk&u2d j l , ~29!

and then we setd j l →1/N. This corresponds to the assumption that, in the regime we are considering, the mechanical e
the process of absorption1 emission of a photon by one ion is equivalent to absorption by one ion and emission by a
ion, weighted by the probability for the two ions to be the same.

By defining the population densitiesP(E,t) of the energy shells through
7-6
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DEP~En ,t !5(
n

8 ^nurun&, ~30!

such that*0
`dEP(E,t)51, and by usingD(E)5g(E)DE, we finally arrive at a rate equation as a function of the motio

energy:

d

dt
P~E,t !52g

V2

4
NE

0

`

dE1

g~E1!Q(kz)~E,E1!

@~E12E!/\2d#21g2/4
P~E,t !

1g
V2

4
NE

21

1

d~cosu!N~cosu!E
0

`

dE1E
0

`

dE2

g~E!Q(k cosu)~E1 ,E!g~E1!Q(kz)~E2 ,E1!

@~E12E2!/\2d#21g2/4
P~E2 ,t !, ~31!
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where we have replaced the sums over the energy by
grals, valid when the average energy^E(t)&@DE. The two
parts of the rate equation~31! show how, after the various
steps of averaging, the total population of a shell with ene
E changes in time: Population is lost by excitation to she
with energyE1 and subsequent emission into any shell, a
population originally atE2 is excited to a shell atE1 and
then scattered into a shell at energyE.

It should be noted that the restriction to a one-dimensio
crystal enters into the number of modes and into the ge
etry of the laser beams, as well as into the pattern of
emitted radiation. However, the application of the ‘‘rando
phase approximation’’~22! and of assumption~27!, which
are at the basis of our derivation, is in no way restricted
the dimensionality of the problem. Actually, an extension
three dimensions would endorse the two approximatio
since the number of modes increases, and with it the den
of states in the spectrum of the motional energies. Theref
an equation for the total motional energy of the crystal of
form of Eq. ~31! can be derived in three dimensions usi
the same considerations applied here for the one-dimens
case.

B. Discussion

1. Ergodic assumption

Since the distribution of the total mechanical energy o
the system is sufficient for describing the cooling proce
assumption~27!, leading to Eq.~31!, simplifies the descrip-
tion of the laser cooling dynamics of the crystal significan
by dramatically reducing the dimensionality of the proble
Equation~31! could also have been obtained by assum
that the population of all states in the same energy she
equal,

^nurun&5p~En!, ~32!

thus definingp(E) as the population of a state at energyE,
such that@cf. Eq. ~30!#

P~E!5p~E!g~E!. ~33!
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Equation~32! implies Eq.~27! and is an even stronger as
sumption. It corresponds to assuming that the system
havesergodically, i.e., that the populations of the states in
energy shell equalize faster than the average quantities o
system evolve in time. It leads to the same rate equation~31!,
but it is a more natural assumption in the last stages of
evolution, when the system tends asymptotically to
steady state.

In general, Eq.~31! describes the dynamics of cooling t
the extent that assumption~27! is valid, i.e., when the aver
age coupling between an eigenstate of the mechanical en
and the states of an energy shell is a smooth function of t
respective energies. This is true when the average coup
of each state of one energy shell to the states of ano
energy shell is of the same order of magnitude. Outside
Lamb-Dicke regime, given the oscillatory behavior of th
Franck-Condon coefficients, this holds if each state coup
appreciably to more than one state of the other energy s
i.e., for D(E)@1 and g sufficiently large. In the Lamb-
Dicke regime analogous considerations can be applied,
they will be discussed in detail in the next section.

The ergodic regime can also be justified by the existe
of a physical process whose main effect is to thermalize
states within one energy shell and which acts on a sho
time scale than the energy-changing processes. This ass
tion is at the basis of treatments in the kinetic theory
quantum gases@22#, where the interatomic collisions lead t
thermalization, and the gas can be considered in a ther
quasiequilibrium distribution on the time scale in which it
cooled. The assumption of rapid thermalization is also c
tral to an earlier study of laser cooling of Coulomb cluste
@12#: There the effect of mode-mode coupling~anharmonic-
ity! was proposed as a possible agent, which does not ex
itly appear in the equations but justifies condition~27!. Di-
rect evidence of this effect has been found in numeri
studies in@17# for the case of exact degeneracy between
frequencies of the modes.

2. Laser intensity distribution over the crystal

In deriving Eq. ~31! we have assumed that all ions a
uniformly driven. We discuss now the case in which only
7-7
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subset$j% of ions in the crystal is illuminated. For simplicity
let us assume in Eq.~23! that V l5V for l P$ j %, and V l
50 otherwise. Due to the geometry of the crystal, the c
pling of each ion to a mode is a function of the mode and
the ion’s position in the crystal@see Eq.~11!#. Some posi-
tions in the chain are more strongly coupled to a certain
of modes, and some positions are even decoupled from
tain modes@17#. Then, the ergodic assumption is valid pr
vided a suitable set of ions is driven, such that the coup
of each mode of collective motion to the radiation is of t
06340
-
f

et
er-

g

same order of magnitude. In that case, the ergodic assu
tion Eq. ~27! can be expressed as

1

M (
$ j %

(
k

8 u^kue2 ikzj un&u2'D~Ek!Q(k)~En ,Ek!, ~34!

whereM is the number of driven ions (M<N). Taking into
account this more general case, the rate equation~31! has the
form
al
ehave

lt with
this

or the
d

dt
P~E,t !52g

V2

4
ME

0

`

dE1

g~E1!Q(kz)~E,E1!

@~E12E!/\2d#21g2/4
P~E,t !

1g
V2

4
ME

21

1

d~cosu!N~cosu!E
0

`

dE1E
0

`

dE2

g~E!Q(k cosu)~E1 ,E!g~E1!Q(kz)~E2 ,E1!

@~E12E2!/\2d#21g2/4
P~E2 ,t !. ~35!

Finally, note that the number of driven ions,M, appears in Eqs.~31! and~35! as an overall scaling factor, making the optic
pumping rate of the crystalM times that of a single ion. In fact, it has been shown earlier that below saturation the ions b
as independent scatterers, and their contributions to cooling simply add up@10,17#.

IV. THE SEMICLASSICAL LIMIT AND THE LAMB-DICKE LIMIT

In this section, starting from Eq.~31! or Eq. ~35! we derive the limit where the motion can be treated classically~semi-
classical limit!, and obtain a Fokker-Planck equation for the energy which is analytically solvable. We compare our resu
the well-known treatments of@9# and@12# and find full agreement with their theoretical predictions. In the second part of
section, starting from Eq.~15! we consider the Lamb-Dicke limit, and discuss the conditions under which an equation f
motional energy of the type of Eq.~31! can be derived for describing cooling ofN ions.

For clarity in the derivation, we rewrite Eq.~31! as

g~E!
d

dt
p~E,t !52g~E!p~E,t !E

0

`

dE1f E
(kz)~E1!L~E12E!1g~E!E

21

1

d~cosu!N~cosu!

3E
0

`

dE1E
0

`

dE2f E
(k cosu)~E1! f E1

(kz)~E2!L~E12E2!p~E2 ,t !. ~36!
Here,p(E) is the population of a state of energyE defined in
Eq. ~32!, andL(E12E) is the Lorentzian distribution,

L~E12E!5
MV2g

4@~E12E!/\2d#21g2
, ~37!

while f E
(k)(E8) is defined through

g~E8!Q(k)~E,E8!5 f E
(k)~E8!. ~38!

From this definition, using Eqs.~27! and~24!,~25!, it can be
verified thatf E

(k)(E8) satisfies the relations
E
0

`

dE8 f E
(k cosu)~E8!51, ~39!

E
0

`

dE8~E82E! f E
(k cosu)~E8!5\vR cos2 u, ~40!

E
0

`

dE8~E82E!2f E
(k cosu)~E8!5~\vR cos2 u!2

1\vR cos2 u
2E

N
.

~41!
7-8
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The analogous relations follow forf E
(kz)(E8) when u is re-

placed byu0, wherekz5k cosu0.
Equations~40! and ~41! are equivalent to Eqs.~24! and

~25! in the approximation of a smooth energy scale.

A. Derivation of a Fokker-Planck equation for the energy

We first consider the limit in which the recoil frequency
much smaller than the linewidth,vR!g. In this limit, while
y

06340
f E
(k)(E8) varies on the scale\vR @see Eqs.~40! and~41!#, the

variation of the populationp(E) on the energy scale\vR is
small, i.e.,

\vRU ]

]E
p~E,t !U!p~E,t !. ~42!

We now expand Eq.~36! aroundE up to first order in the
parametervR /g and, using Eqs.~39!–~41!, we obtain
d

dt
g~E!p~E,t !522vR cos2 u0L8~0!g~E!p~E,t !1vRF ~a1cos2 u0!L~0!

22
E

N
cos2 u0L8~0!Gg~E!p8~E,t !1vR

E

N
~a1cos2 u0!L~0!g~E!p9~E,t !. ~43!
e
of

at-

l

on-

ong
Here,

L8~0!5F d

dx
L~x!G

x50

5
4MV2gd

~4d21g2!2
~44!

and

a5E d~cosu!cos2 uN~cosu!. ~45!

We rescale the time as

t5vR~cos2 u01a!L~0!t ~46!

and define

C52
cos2 u0

~cos2 u01a!

L8~0!

L~0!
. ~47!

Note that with definition~44! C,0 for red detuningsd
,0 (vL,v0). Equation~43! can now be written as

d

dt
g~E!p~E,t!52

C

N
@Ng~E!p~E,t!1Eg~E!p8~E,t!#

1
1

N
@Ng~E!p8~E,t!1Eg~E!p9~E,t!#.

~48!

Using the energy dependence of the smoothed densit
statesg(E) as given in Eq.~6!, and Eq. ~33!, we get a
Fokker-Planck equation of the form
of

d

dt
P~E,t!52

]

]E
@A~E!P~E,t!#1

1

2

]2

]E2
@B~E!P~E,t!#,

~49!

where

A~E!511
C

N
E,

B~E!5
2

N
E.

Equation ~49! can be easily solved. In the following, w
calculate the steady state solution and the time evolution
the system, and compare the result with the existing tre
ments evaluated in the limit of one ion (N51).

1. Steady state

The steady state distributionP0(E) satisfies the equation
(d/dt)P0(E)50. Thus, it is a solution of the differentia
equation

]

]E
@B~E!P0~E!#52A~E!P0~E! ~50!

~where the integration constant has been set to 0 for a c
vergent solution! and has the form

P0~E!5FEN21 exp~CE!, ~51!

with normalization constantF. For red detunings (C,0) and
if the wave vector of the cooling laser has a component al
the motional axis (cosu0Þ0) the integral of Eq.~51! over the
energies converges. Then, the value ofF is found from
*0

`dEP0(E)51, yielding
7-9
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F5
uCuN

G~N!
. ~52!

Using these results, the steady state energy has the form

^E&5E
0

`

dEEP0~E!5
N

uCu
5Ng

a1cos2 u0

4 cos2 u0
S g

2udu
1

2udu
g D .

~53!

Equation ~53! contains the dependence of the cooli
limit on the angleu0 between the cooling laser beam and t
direction of the motion. The final energy is minimal fo
cosu051, i.e., when the laser propagates parallel to the t
axis, and it diverges for cosu050, when the laser is orthogo
nal to the trap axis and there is thus no laser cooling.

The minimum of the final energy vs detuning is reach
for d52g/2, as in the case of one ion~see, for example
@3#!. Inserting into Eq.~53! N51, a51/3 ~which corre-
sponds to spatially isotropic spontaneous emission!, and
cosu051, we find the same result as Javanainen and S
holm in their semiclassical expansion for one ion@9#. Hence,
the final energy forN ions isN times the steady state energ
achieved by Doppler cooling of one ion. This general res
has also been found earlier in special cases, such as a
lomb cluster in the Lamb-Dicke regime@12#, and a two-ion
crystal treated in Ref.@23# by extending the method of@9#.

2. Time evolution

The steady state solution suggests use of the follow
ansatz for solving Eq.~49!:

P~E,t !5F~ t !EN21expS 2
E

U~ t ! D . ~54!

whereU(t) is a positive function of time andF(t) is a nor-
malization factor, such that at any instantt the relation
*0

`dEF(t)P(E,t)51 is satisfied, i.e.,

F~ t !5
1

G~N!U~ t !N
. ~55!

This ansatz corresponds to assuming that the distribu
P(E,t) is always thermal with average energy

^E~ t !&5NU~ t !. ~56!

Substituting Eq.~54! into Eq.~49! and using Eq.~46! we get
a differential equation forU:

dU

dt

1

U S E

U
2ND5

1

N S C1
1

U D S E

U
2ND . ~57!

Since this equation must be satisfied for all values ofE, we
find
06340
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n

dU

dt
5

1

N
~CU11!, ~58!

which has the solution

U~ t !5U0 expS 2vR cos2 u0L8~0!

N
t D1

1

C
, ~59!

whereNU05^E(0)& is the initial energy. Fort→` we re-
cover from Eq.~59! the steady state solution~51!. The rate at
which the steady state is reached is

Gcool5
2vR cos2 u0uL8~0!u

N
5

M

N

8vR cos2 u0V2gudu

~4d21g2!2
,

~60!

where we have used Eq.~44!. Thus the cooling rate increase
linearly with increasing number of driven ionsM. It is largest
if all ions are driven, as expected.

Since the results derived so far agree precisely with th
found earlier in specific cases, the general procedure tha
us from the quantum-mechanical equations to the rate e
tion for the energy can be considered the common basis
underlies and unifies these earlier treatments. Furtherm
we have shown that the final energy of anN-ion crystal isN
times that of a single motional mode, while the cooling ra
is M /N times that for the one-dimensional motion of a sing
ion, M being the number of ions driven by the laser.

A final remark should be made on the assumptions le
ing to Eq. ~49!. In deriving the Fokker-Planck equation w
have assumed ergodicity and Eq.~42!, i.e., thatp(E) varies
negligibly on the recoil energy scale. The latter conditi
corresponds to the second order expansion in\ of Ref. @9#.
In that work the derivation of a Fokker-Planck equation w
based on the limit of overdamped oscillation,g@n, in order
to adiabatically eliminate the excited state from the eq
tions. Our derivation, however, does not necessarily im
this limit. Only in the case ofN51 ion, which is not the
main focus of our study, must we haveDE@\n in order to
fulfill the condition of a large density of states,D(E)@1,
and thus for this special case the overdamped oscillator l
is a requirement for the validity of Eq.~49!.

B. Lamb-Dicke regime

When the atomic motion is well localized with respect
the laser wavelength~Lamb-Dicke regime!, the Franck-
Condon coefficients in Eq.~16! can be approximated by the
first order expansion in the parameter^(kW•xW )2&. For a single
ion excited below saturation, the dynamics are described
a rate equation for the populations of the states with vib
tional numbern, which can be analytically solved@3,8#. In
this form, sincen is proportional to the mechanical energy
the ion, the equation for cooling is an equation for the e
ergy. For many ions, a set of rate equations can also
derived which describe cooling of each mode and which
decoupled, since a simultaneous change of the energy of
7-10
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or more modes by scattering of a photon is of higher orde
the Lamb-Dicke parameter~and thus takes place on a long
time scale! @10,17#.

Yet we show in this section that under some conditions
can derive a single equation for the total energy of ma
ions. Given the analytical simplicity of the model, this e
ample is also instructive in order to see the limits of valid
of the ergodic equation.
or
ly

s

ve
in
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Let us consider Eqs.~15! in the Lamb-Dicke regime@24#.
Here the reduction of this set of equations to the rate eq
tions ~23! is possible without assumption~22!, since the
terms ~19! and ~21! are negligible, either because they a
rapidly oscillating or because their coupling to the popu
tions is of higher order in the Lamb-Dicke parameter@10#. In
first order in the parametervR /nb , with b51, . . . ,N, the
modulus squared of the Franck-Condon coefficient has
form
-

u^nueikzj uk&u2' )
a51

N

dna ,kaS 12 (
b51

N

h j
b2~2nb11!D

1 (
b51

N

)
a51,aÞb

N

dna ,ka
@h j

b2~nb11!dkb ,nb111h j
b2nbdkb ,nb21#. ~61!

Thus, given the initial state of motionun&5un1 , . . . ,nN&, scattering of a photon involves three possible transitions:~i! the
so-called carrier transition, of zero order in the Lamb-Dicke parameter, with final stateuk&5un&; ~ii ! the red-sideband transi
tions, whereuk&5un1 , . . . ,nb21, . . . ,nN&; and~iii ! the blue-sideband transitions, whereuk&5un1 , . . . ,nb11, . . . ,nN&. The
cases~ii ! and ~iii ! are of second order in the parameterh j

b .
When we substitute Eq.~61! into Eq. ~23!, we obtain

d

dt
^nurun&52^nurun&vR cos2 u0 (

b51

N

@~nb11!L~nb!/nb1nbL~2nb!/nb#

2^nurun&vR(
b51

N

a~2nb11!L~0!/nb

1 (
b51

N

^n11burun11b&
vR

nb
~nb11!@cos2 u0L~2nb!1aL~0!#

1 (
b51

N

^n21burun21b&
vR

nb
nb@cos2 u0L~nb!1aL~0!#, ~62!
. In
ker-

hells

the

i-

of
where have used( jh j
b25vR /nb , and the vector1b is de-

fined in the N-dimensional Hilbert space through (1b)a
5da,b for a51, . . . ,N.

Equation~62! is linear in the vibrational numbersnb of
the single modes, which are weighted by the fact
vRL(nb)/nb . Only when these weights are of approximate
equal magnitude can a hypothesis similar to~27! be applied,
which allows summation over states of equal energy. Thi
true whennb!g for all modesb because in this limit the
Lorentzian atomic-resonance curve varies very slowly o
all red ~blue! sidebands of the modes. Then, by expand
the terms in Eq.~62! at the second order in the parame
nb /g, we obtain a Fokker-Planck equation of the same fo
as Eq.~49!. In that sense, the conditionnb!g can be con-
sidered a requirement for deriving an ergodic equation in
Lamb-Dicke regime.

Alternatively, in @12# a single equation for the total mo
tional energy in the Lamb-Dicke regime was justified by a
suming that all modes thermalize on a faster time scale
thus imposing
s

is

r
g
r

e

-
d

^nb&5
1

N

E

\nb
. ~63!

Application of Eq.~63! to Eq.~62! yields an equation for the
total mechanical energy which can be solved analytically
our treatment above, in the case where we find a Fok
Planck equation, condition~63! is also fulfilled, but there it is
a consequence of the average coupling among energy s
due to light scattering, rather than an extra assumption.

C. Discussion

The Fokker-Planck equation~49! has been derived in two
different ways: in the semiclassical case by starting from
ergodic equation~31!, and in the Lamb-Dicke regime by
starting from Eq.~23!. Both derivations rely on the limitg
@n,vR , while in the Lamb-Dicke regime there is the add
tional constraint thatvR!n.

Let us now summarize the solutions of Eq.~49!. The form
of the solution is the same as the one obtained for cooling
7-11
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one ion, where here the numberN of ions appears in the
steady state energy~53! as a scaling factor, and the coolin
rate ~60! scales as the ratioM /N whereM is the number of
driven ions. This result supports the conclusion drawn
@12#, that the cluster is cooled like a single ion. It is instru
tive, in this regard, to compare two particular cases that
hibit analogies: The axial motion of two ions in a trap wi
collective modes at frequenciesn1 ,n2, and the motion of a
single ion in a two-dimensional harmonic oscillator potent
with the same frequenciesn1 and n2 on the two axes. Ne-
glecting for the moment the different masses, the mechan
Hamiltonians of the two systems are equivalent. The la
ion interaction terms are also equivalent, provided that
of the two ions in the chain is driven, and that the Lam
Dicke parameter for each mode of the chain is the sam
the Lamb-Dicke parameter for each axis of the trap of
single ion. This latter condition can be fulfilled by choosin
in the single ion case, the proper angle of propagation of
laser in the two-dimensional plane. Therefore, we expect
treatment to be equally applicable to both cases and to y
similar results.

The only difference between the two cases arises in
spontaneous emission: in the two-dimensional one-ion c
the photon is scattered at a random angle in the plane an
ratio between the projections of the recoil energy on e
axis can vary. In contrast, in the two-ion case, the scatte
angle is the same for both modes, hence the average en
transfer to the two modes has a fixed ratio in any scatte
event. This difference appears as a geometrical factor in
dynamical equations, as well as in the expression for the fi
energy~53! @15#. From that consideration we expect that t
generalization of our treatment to a three-dimensional C
lomb crystal will change the one-dimensional results only
numerical factors representing the different geometry of
problem.

V. EVALUATION OF THE SEMICLASSICAL ERGODIC
EQUATION

So far we have assumed a grid of energyDE, which de-
fines the coarse graining on which the relevant system p
06340
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erties for cooling are defined. The gridDE has been chosen
according to the condition\g@DE, and an equation for the
energy has been derived for the situation that the numbe
states at energyE is D(E)@1. Thus,DE represents a limited
resolution which allows us to average over many quant
states. We now discuss the limitDE@\nN . This case is
expected to correspond to the classical limit, since the re
lution is such that all details of the quantum spectrum
averaged out. We will derive the classical limit starting fro
the average Franck-Condon coefficientsQ(k)(E,E8) in Eq.
~26!, from which we obtain an explicit form for the ergodi
equation~31!.

Let us consider the sum in Eq.~26!. Using the property of
the trace, we can write

1

N (
j

(
k

8 (
n

8 ^kue2 ikzj un&^nueikzj uk&

5
1

N (
j

(
k

8 (
n

8 Tr$uk&^kue2 ikzj un&^nueikzj%

[C~Ek ,En!, ~64!

thus definingC(E,E8)5Q(k)(E,E8)D(E)D(E8). The sum-
mation over the states belonging to the shell of energyE can
be reexpressed as

(
k

8 uk&^ku5E
F(Ek)

dEd~E2Ĥmec!(
k

uk&^ku, ~65!

and Eq.~64! acquires the form

C~Ek ,En!5
1

N (
j

TrH EF(Ek)
dEE

F(En)
dE8

3d~E2Ĥmec!e
ikzjd~E82Ĥmec!e

2 ikzjJ .

~66!

Using the Fourier transform of thed function, we get
E
F(Ek)

dEd~E2Ĥmec!5E
F(Ek)

dE
1

2p\E2`

`

dtei (E2Ĥmec)t/\

5
1

2pE2`

`

dt
sin~DEt/\!

t
ei (Ek2Ĥmec)t/\, ~67!

such that Eq.~66! can be rewritten as

C~E,E8!5
1

N (
j

1

4p2E2`

`

dt
sin~DEt/\!

t
eiEt/\E

2`

`

dt8
sin~DEt8/\!

t8
eiE8t8/\Aj~t,t8!, ~68!

where we have defined

Aj~t,t8!5Tr$e2 iĤ mect/\eikzje2 iĤ mect8/\e2 ikzj%. ~69!
7-12
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By using coherent statesuab& to calculate the trace, using Eqs.~4! and~10!, and the properties of coherent states@21#, Eq.~69!
takes the form

Aj~t,t8!5 )
b51

N E d2ab

p2N
expF2 i

nb

2
~t1t8!Gexp@2uabu2e2 inbt8~12e2 inbt!#

3exp$2@ uabu21h j
b21 ih j

b~ab* e2 inbt2ab!#~12e2 inbt8!%. ~70!

In Eq. ~68!, the integrand is the product ofAj (t,t8) and the window function sin(x)/x of width \/DE. According to Eq.~70!,
Aj (t,t8) depends ont,t8 only througheinbt andeinbt8, and thust is scaled by the mode frequencies.

Derivation of the classical limit

We now consider the limitE,DE@\nb for all b. This corresponds to the situation^nb&@1, e.g., before the cooling limi
is reached, and in general to the regimeg@nb . In this limit we can expand the exponentials in Eq.~70! in the parameter
\n/DE. Up to first order, Eq.~68! is equivalent to

C~E,E8!'S DE

\ D 2

)
b51

N E d2ab

p2N F 1

2pE2`

`

dt
sin~DEt/\!

DEt/\
ei [E/\2nb(uabu211/2)]tG

3F 1

2pE2`

`

dt8
sin~DEt8/\!

DEt8/\
ei $E8/\2nb[ uabu211/222hb Im(ab)2hb2] %t8G . ~71!

This result can be interpreted physically, considering thatt is the Fourier conjugate of the energyE/\ and has the dimension
of a time. Thus, Eq.~69! can be seen as the overlap between the stateua& and the stateua8&, which corresponds to a
displacement ofua&, followed by free evolution for a timet, then by a displacement back, and finally by free evolution fo
time t8. Integral~68! sums over all intervals of timest,t8, for all trajectories in the neighborhood of the energy shellsE at t
and E8 at t8, weighted by the time window of resolution\/DE. For t5t850 the overlap is maximum, since the state
unchanged. Although the overlap shows a certain periodicity, e.g., forN51 andt,t8 multiples of 2p/n, A(t,t)5A(0,0), for
DE@\n these recurrence times fall out of the window function interval. Therefore the only appreciable contribution
integral comes fromt,t8;0. In other words, the classical limit corresponds to large energy uncertainty, such that on
short time evolution of the wave packet contributes appreciably to the integral, since only in this limit are the trajectorie
coherent.

Equation~71! can now be rewritten as an integral in the classical phase space using the definition of coherent sta

ab5 i p̄bA \

2mnb
1q̄bAmnb

\
, ~72!

whereq̄b ,p̄b are real numbers. Integrating overt,t8 yields

C~E,E8!5E
F(E)

dE1EF(E8)
dE2E dq̄1•••dq̄Ndp̄1•••dp̄N

hN
dS E12 (

b51

N p̄b
2

2m
2V~ q̄1 , . . . ,q̄N!D

3dS E22
~ p̄12\k!2

2m
2 (

b52

N p̄b
2

2m
2V~ q̄1 , . . . ,q̄N!D . ~73!
e

of

r
e

Integrating in phase space~see Appendix B!, and using the
relation f E(E8)5C(E,E8)/@D(E8)DE#, we obtain

f E~E8!5
G~N!/A4\vRE

ApGS N2
1

2D F12S E82E2\vR

A4\vRE
D 2GN23/2

.

~74!
06340
The function f E(E8) is real, and thus well defined, in th
interval of energies @E1\vR2A4\vRE,E1\vR

1A4\vRE#, and it is normalized with respect toE8. In Fig.
3 we plot Eq.~74! for N51,10,100. ForN51 it has the
well-known form of the classical momentum distribution
a harmonic oscillator at a given energyE: In fact in this case
E85E1\vR1\kp/m, i.e., the probability for the oscillato
to have final energyE8 after the scattering is equal to th
7-13
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probability that the oscillator, at energyE, has momentump
when the scattering event occurs. For higherN the distribu-
tion peaks more and more narrowly aroundE1\vR .

Finally, note that, from the definition off E(E8) in Eq.
~74! and from Eq.~38!,

Q(k)~E,E8!

5
\Nn1•••nNG~N!

ApGS N2
1

2D ~4\vREE8!N21

3@2~E82E!22\2vR
212\vR~E81E!#N23/2.

~75!

This function is symmetric inE andE8 as in the quantum-
mechanical case@see Eq.~26!#. In the limit in which this
result holds, we eventually find the explicit form of the e
godic rate equation by inserting Eq.~75! into Eq. ~31!. An
explicit form of the rate equation can also be evaluated in
limit of N@1 ions @25#.

VI. CONCLUSIONS

We have studied Doppler cooling of a Coulomb cryst
Starting from the full master equation, in the low saturati
regime and by consecutive steps of averaging, we have
rived a rate equation for the total energy of the crystal,
ducing dramatically the number of degrees of freedom
thus considerably simplifying the complexity of the proble
The equation is defined on a coarse-grained energy s
with grid DE such thatDE!\g, whereg is the linewidth of
the electronic transition resonant with laser light. Its deriv
tion is based on the quasicontinuum characteristic of
spectrum of motional energiesE on DE, and on the assump
tion that the coupling between states belonging to differ
energy shells is a smooth function ofE.

Starting from the general form of the equation, we ha
studied the semiclassical limit and the Lamb-Dicke limit, a

FIG. 3. Plot ofg(E)Q(k)(E,E8) as in Eq.~75! as a function of
E for N51,10,100.E,E8 are in units of the recoil energy\vR and
E52\vR . The dashed line indicates the location of the center
the distribution,E85E1\vR .
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in both cases we have found a Fokker-Planck equation
scribing cooling of a Coulomb crystal ofN ions. The general
solution agrees with the results of previous treatments, wh
were developed in perturbation theory for these limiti
cases@3,8,9,12#. As observed in@12#, the dynamics of cool-
ing of a Coulomb crystal can be scaled to that of a single i

In the semiclassical limit we have derived the expli
form of the rate equation for the mechanical energy, by c
culating from the full quantum-mechanical expression
classical probability of scattering between motional state
different energies. An explicit form of the equation can al
be derived in the quantum limit for the case ofN@1 ions.
This derivation will be presented in future work@25#.

Our results, with marginal changes, can be applied t
Coulomb crystal in three dimensions. In that case, the dim
sionality enters into the number of modes, which for a crys
of N ions is 3N, and into the spatial distribution of the sca
tered photons, thus affecting the coefficients of the ene
rate equation. From the comparison between the coo
problem for a one-dimensional crystal and for one ion
more dimensions, we expect the final energy in three dim
sions to differ from the one-dimensional result only by
geometrical factor.

To conclude, we would like to remark on the generality
the treatment. Other incoherent processes in physical
tems can be studied in an analogous way, provided that
rate determining the dynamics of interest can be singled
and that on the corresponding energy scale the spectrum
energy levels is characterized by a quasicontinuum.
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APPENDIX A: DERIVATION OF MOMENTS

1. One ion

Let us consider a one-dimensional harmonic oscillator
frequency n and number state un&. Considering
z^nuexp(ikx)uk&z2 as a distribution over the final statesuk& of
energyEk , given the initial stateun& with energyEn , the
first and the second moments of the distribution are

^Ek2En&k5\n(
k

~k2n!u^nueih(a†1a)uk&u2, ~A1!

^~Ek2En!2&k5\2n2(
k

~k2n!2u^nueih(a†1a)uk&u2. ~A2!

f
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Using the propertya†auk&5kuk& and the closure relation o
the states$un&%, we can contract the sum overk in Eqs.~A1!
and ~A2!, using

kmz^nueih(a†1a)uk& z25^nue2 ih(a†1a)~a†a!meih(a†1a)un&.
~A3!

Expression~A3! can be further simplified by using the com
mutation properties of the bosonic operators, and we ob

^Ek2En&k5\vR , ~A4!

^~Ek2En!2&k52\vREn1\2vR
2 , ~A5!

where we have usedh25vR /n.

2. N ions

Let us now take anN-ion chain. Using the definitions o
Sec. II, the first moment of the distribution is

~^Ek2En&k! j5(
k

~Ek2En!u^kueikzj un&u2

5\ (
a51

N

naS kA \

2mna
bj

aD 2

5\vR , ~A6!
06340
in

where the subscriptj refers to the driven ion. Analogously
the second moment has the form

„^~Ek2En!2&k…j5S \2k2

2mn D 2

n (
a51

N

na~2na11!~bj
a!21\2vR

2 .

~A7!

Averaging Eq.~A7! over the ions of the chain, we find

^~Ek2En!2&k5
1

N (
j

„^~Ek2En!2&k…j52
\vR

N
En1\2vR

2 .

~A8!

APPENDIX B: EVALUATION OF THE SEMICLASSICAL
TRACE

Expression~73! can be rewritten as
F5E
F(E)

dE1EF(E8)
dE2E dp̄1dS E22E12\vR2

\k

m
p̄1D E dq̄1•••dq̄N

dp̄2•••dp̄N

hN

3dS E12 (
b51

N p̄b
2

2m
2V~ q̄1 , . . . ,q̄N!D . ~B1!

We define

I ~E,p̄1!5E dq̄1•••dq̄N

dp̄2•••dp̄N

hN
dS E2 (

b51

N p̄b
2

2m
2V~ q̄1 , . . . ,q̄N!D , ~B2!

and move to the coordinatesqb where V is a diagonal quadratic form. By introducing the set of rescaled variablesQb

5Amnb
2/2qb , Pb5A1/2mpb , integral ~B2! is the measure of the surface of a unitary hypersphere in 2N21 dimensions.

Integrating, we obtain

I ~E,p̄1!5
2N~E2 p̄1

2/2m!N23/2

A2mn1•••nN

pN21/2

G~N21/2!
. ~B3!

Substituting now this expression into Eq.~B1! and integrating overp̄1, we get

F5E
F(E)

dE1

1

G~N21/2!
E

F(E8)
dE2

m

\k

1

A2pm\Nn1•••nN
S E12

~E22\vR2E1!2

4\vR
D N23/2

5E
F(E)

dE1

E1
N21

\Nn1•••nNG~N!
E

F(E8)
dE2f E1

~E2!, ~B4!

where
7-15
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f E~E8!5
G~N!

ApG~N21/2!

1

A4\vRE
S 12

~E82\vR2E!2

4\vRE D N23/2

. ~B5!

It can be easily verified that Eq.~B5! satisfies the relations~38! and ~39!–~41!.
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