1,153 research outputs found

    La cueva de Madrid. Magia y tramoya en “La dama duende”

    Get PDF
    Si según las investigaciones de la antropología cultural la magia tiene mucho parecido tanto con la técnica como con la retórica, la magia artificiosa del teatro barroco resulta de una interacción sugestiva entre la escenotécnica y el arte de representar. La dama duende se puede leer como una puesta en escena original de esta interacción. Como la intriga de Doña Ángela de Toledo se basa no solamente en un juego de rol ingenioso, sino también en una invención técnica digna del «artificio de Juanelo», la comedia cómica más exitosa de Calderón junta dos vertientes de la magia del teatro que quedan separados en dos piezas contemporáneas inspiradas por la leyenda de la cueva mágica de Salamanca o de Toledo. Así, La dama duende traslada a Madrid, la capital del teatro aúreo, el famoso artificio de Toledo y la legendaria cueva de los encantadores —no sin demostrar la fuerza irresistible de este encanto sin encanto.If, from an anthropological perspective, magical acts are similar to technical acts as well as to rhetorical acts, the artificial magic of baroque theatre results from a suggestive interaction between stage machinery and acting. La dama duende can be read as an original staging of this interaction. Since the intrigue of Doña Ángela de Toledo is based not only on an ingenious role-play, but also on a technical invention compared to the «artificio de Juanelo», Calderón’s best known comedy brings together two aspects of theatrical magic that appear separated one from another in two contemporary pieces inspired by the legend of the magical cave of Salamanca or of Toledo. Thus, La dama duende transfers to Madrid, the capital of Golden Age theatre, the famous artifice of Toledo and the legendary hiding-place of magicians —not without demonstrating the irresistible spell of stage magic

    L-arginine: A unique amino acid for improving depressed wound immune function following hemorrhage

    Get PDF
    Objective: To determine whether L-arginine has any salutary effects on wound immune cell function following trauma-hemorrhage. Background. Depressed wound immune function contributes to an increased incidence of wound infections following hemorrhage. Although administration of L-arginine has been shown to restore depressed cell-mediated immune responses following hemorrhage potentially by maintaining organ blood flow, it remains unknown whether Larginine has any salutary effects on the depressed local immune response at the wound site. Methods: Male mice were subjected to a midline laparotomy and polyvinyl sponges were implanted subcutaneously in the abdominal wound prior to hemorrhage (35 +/- 5 mm Hg for 90 min and resuscitation) or sham operation. During resuscitation mice received 300 mg/kg body weight L-arginine or saline (vehicle). Sponges were harvested 24 h thereafter, wound fluid collected and wound immune cells cultured for 24 h in the presence of LPS. Pro- (IL-1beta, IL-6) and anti-inflammatory (IL-10) cytokines were determined in the supernatants and the wound fluid. In addition, wounds were stained for IL-6 immunohistochemically. In a separate set of animals, skin and muscle blood flow was determined by microspheres. Results: The capacity of wound immune cells to release IL-1beta and IL-6 in vitro was significantly depressed in hemorrhaged mice receiving vehicle. Administration of L-arginine, however, improved wound immune cell function. In contrast, in vivo the increased IL-6 release at the wound site was decreased in L-arginine-treated mice following hemorrhage. Moreover, IL-10 levels were significantly increased in the wound fluid in hemorrhaged animals receiving L-arginine compared to vehicle-treated mice. In addition, the depressed skin and muscle blood flow after hemorrhage was restored by L-arginine. Conclusions: Thus, L-arginine might improve local wound cell function by decreasing the inflammatory response at the wound site. Since L-arginine protected wound immune cell function this amino acid might represent a novel and useful adjunct to fluid resuscitation for decreasing wound complications following hemorrhage. Copyright beta 2002 S. Karger AG, Basel

    Impaired Representation of Time in Schizophrenia Is Linked to Positive Symptoms and Cognitive Demand

    Full text link
    Time processing critically relies on the mesencephalic dopamine system and striato-prefrontal projections and has thus been suggested to play a key role in schizophrenia. Previous studies have provided evidence for an acceleration of the internal clock in schizophrenia that may be linked to dopaminergic pathology. The present study aimed to assess the relationship between altered time processing in schizophrenia and symptom manifestation in 22 patients and 22 controls. Subjects were required to estimate the time needed for a visual stimulus to complete a horizontal movement towards a target position on trials of varying cognitive demand. It was hypothesized that patients – compared to controls – would be less accurate at estimating the movement time, and that this effect would be modulated by symptom manifestation and task difficulty. In line with the notion of an accelerated internal clock due to dopaminergic dysregulation, particularly patients with severe positive symptoms were expected to underestimate movement time. However, if altered time perception in schizophrenia was better explained in terms of cognitive deficits, patients with severe negative symptoms should be specifically impaired, while generally, task performance should correlate with measures of processing speed and cognitive flexibility. Patients underestimated movement time on more demanding trials, although there was no link to disease-related cognitive dysfunction. Task performance was modulated by symptom manifestation. Impaired estimation of movement time was significantly correlated with PANSS positive symptom scores, with higher positive symptom scores associated with stronger underestimation of movement time. The present data thus support the notion of a deficit in anticipatory and predictive mechanisms in schizophrenia that is modulated both by symptom manifestation and by cognitive demand

    A formal framework for a nonlocal generalization of Einstein's theory of gravitation

    Get PDF
    The analogy between electrodynamics and the translational gauge theory of gravity is employed in this paper to develop an ansatz for a nonlocal generalization of Einstein's theory of gravitation. Working in the linear approximation, we show that the resulting nonlocal theory is equivalent to general relativity with "dark matter". The nature of the predicted "dark matter", which is the manifestation of the nonlocal character of gravity in our model, is briefly discussed. It is demonstrated that this approach can provide a basis for the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.Comment: 13 pages RevTex, no figures; v2: minor corrections, reference added, matches published versio

    Gravitational Lorentz Force and the Description of the Gravitational Interaction

    Get PDF
    In the context of a gauge theory for the translation group, we have obtained, for a spinless particle, a gravitational analog of the Lorentz force. Then, we have shown that this force equation can be rewritten in terms of magnitudes related to either the teleparallel or the riemannian structures induced in spacetime by the presence of the gravitational field. In the first case, it gives a force equation, with torsion playing the role of force. In the second, it gives the usual geodesic equation of General Relativity. The main conclusion is that scalar matter is able to feel anyone of the above spacetime geometries, the teleparallel and the metric ones. Furthermore, both descriptions are found to be completely equivalent in the sense that they give the same physical trajectory for a spinless particle in a gravitational field.Comment: Equations (44)-(47) correcte

    Improved Energy-Momentum Currents in Metric-Affine Spacetime

    Get PDF
    In Minkowski spacetime it is well-known that the canonical energy-momentum current is involved in the construction of the globally conserved currents of energy-momentum and total angular momentum. For the construction of conserved currents corresponding to (approximate) scale and proper conformal symmetries, however, an improved energy-momentum current is needed. By extending the Minkowskian framework to a genuine metric-affine spacetime, we find that the affine Noether identities and the conformal Killing equations enforce this improvement in a rather natural way. So far, no gravitational dynamics is involved in our construction. The resulting dilation and proper conformal currents are conserved provided the trace of the energy-momentum current satisfies a (mild) scaling relation or even vanishes.Comment: 14p

    Axial Torsion-Dirac spin Effect in Rotating Frame with Relativistic Factor

    Full text link
    In the framework of spacetime with torsion and without curvature, the Dirac particle spin precession in the rotational system is studied. We write out the equivalent tetrad of rotating frame, in the polar coordinate system, through considering the relativistic factor, and the resultant equivalent metric is a flat Minkowski one. The obtained rotation-spin coupling formula can be applied to the high speed rotating case, which is consistent with the expectation.Comment: 6 page

    Aberrant network connectivity during error processing in patients with schizophrenia

    Full text link
    BACKGROUND: Neuroimaging methods have pointed to deficits in the interaction of large-scale brain networks in patients with schizophrenia. Abnormal connectivity of the right anterior insula (AI), a central hub of the salience network, is frequently reported and may underlie patients’ deficits in adaptive salience processing and cognitive control. While most previous studies used resting state approaches, we examined right AI interactions in a task-based fMRI study. METHODS: Patients with schizophrenia and healthy controls performed an adaptive version of the Eriksen Flanker task that was specifically designed to ensure a comparable number of errors between groups. RESULTS: We included 27 patients with schizophrenia and 27 healthy controls in our study. The between-groups comparison replicated the classic finding of reduced activation in the midcingulate cortex (MCC) in patients with schizophrenia during the commission of errors while controlling for confounding factors, such as task performance and error frequency, which have been neglected in many previous studies. Subsequent psychophysiological interaction analysis revealed aberrant functional connectivity (FC) between the right AI and regions in the inferior frontal gyrus and temporoparietal junction. Additionally, FC between the MCC and the dorsolateral prefrontal cortex was reduced. LIMITATIONS: As we examined a sample of medicated patients, effects of antipsychotic medication may have influenced our results. CONCLUSION: Overall, it appears that schizophrenia is associated with impairment of networks associated with detection of errors, refocusing of attention, superordinate guiding of cognitive control and their respective coordination

    Prólogo

    Get PDF

    Nonlocal Gravity Simulates Dark Matter

    Full text link
    A nonlocal generalization of Einstein's theory of gravitation is constructed within the framework of the translational gauge theory of gravity. In the linear approximation, the nonlocal theory can be interpreted as linearized general relativity but in the presence of "dark matter" that can be simply expressed as an integral transform of matter. It is shown that this approach can accommodate the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.Comment: 5 pages RevTex, v3: new material and references added, abstract somewhat extende
    corecore