369 research outputs found

    Testing of an adsorption chiller prototype for data center cooling.

    Get PDF
    The main objective of this study is to present a novel adsorption chiller prototype (designed and realized by the company Sorption Technologies GmbH) that is suitable for cooling of data center servers. This prototype has been designed to fit into commercially-available data center racks. This adsorption prototype has been designed to cool down the rack servers by means of liquid cooling. Furthermore, an air-cooler heat exchanger is also integrated into the adsorption machine to cool down the rest of the rack components (i.e., patch panels, HDD). This way, the adsorption system is able to cool down all rack components. Phase-change chambers are integrated into the adsorption modules for direct evaporation/condensation, removing the need of large vacuum valves and allowing to have a more simpler and compact vacuum system. This also means that the refrigerant distribution is completely done in liquid phase. The prototype is installed at the Department of Energy at the Politecnico di Milano and testing will be carried out using cooling water temperatures in the range 25 – 30 °C and hot water temperatures in the range 55 – 65 °C

    Biodiversity and species interactions: extending Lotka-Volterra community theory

    Get PDF
    A new analysis of the nearly century-old Lotka-Volterra theory allows us to link species interactions to biodiversity patterns, including: species abundance distributions, estimates of total community size, patterns of community invasibility, and predicted responses to disturbance. Based on a few restrictive assumptions about species interactions, our calculations require only that the community is sufficiently large to allow a mean-field approximation. We develop this analysis to show how an initial assemblage of species with varying interaction strengths is predicted to sort out into the final community based on the species' predicted target densities. The sorting process yields predictions of covarying patterns of species abundance, community size, and species interaction strengths. These predictions can be tested using enrichment experiments, examination of latitudinal and productivity gradients, and features of community assembly

    Alcoholysis of palm oil mid-fraction by lipase from Rhizopus rhizopodiformis

    Get PDF
    A mycelial lipase from Rhizopus rhizopodiformis was prepared in fragment form. The lipase was examined to catalyze the alcoholysis of palm oil mid-fraction (PMF) in organic solvents. High percentage conversions of PMF to alkyl esters were achieved when methanol or propanol was used as acyl acceptor. Of the two most prevalent fatty acids in PMF, palmitic acid seemed to be preferred over oleic acid in the formation of methyl and propyl esters. The optimal ratio of oil to methanol in the alcoholysis reaction is 1 to 2 moles. The lipase exhibited high alcoholysis activities in nonpolar solvents (log P>2), such as hexane, benzene, toluene, and heptane. The enzyme showed exceptionally high thermostability

    Evaluating the Effectiveness of Grassbed Treatments as Habitat for Juvenile Black Bass in a Drawdown Reservoir

    Get PDF
    Many reservoirs in arid regions experience highly variable water levels caused by seasonal inflow fluctuations and designated outflow requirements. At Shasta Lake, California, managers plant cereal-grain grassbeds on exposed drawdown shorelines to increase juvenile fish habitat, localize productivity, and increase invertebrate fish prey. To determine the efficacy of these plantings, the abundance of juvenile black basses Micropterus spp. (20–55 mm standard length) and the amount of periphyton and macroinvertebrate prey were compared among three treatment types: (1) planted grassbeds of cereal barley Hordeum vulgare; (2) artificial rope grassbeds, which eliminated physical deterioration and nutrient release; and (3) nonplanted control sites with predominately sand and gravel substrates. In comparison with control areas, juvenile black bass abundance averaged 54 times higher in planted grassbeds and 230 times higher in artificial grassbeds. Periphyton (chlorophyll a) and benthic invertebrate biomass did not differ significantly between planted grassbeds and control sites. In artificial grassbeds, periphyton was more than two times the control levels, and benthic invertebrate biomass was more than 12 times the control levels. We conclude that the long-term availability of physical structure, rather than nutrient release associated with decomposition of grassbed materials, drives use and effectiveness of grassbed treatments. Future management decisions in drawdown reservoirs should emphasize increasing long-term availability and integrity of physical habitat for juvenile fishes in the littoral zone

    Discovery of Pod Shatter-Resistant Associated SNPs by Deep Sequencing of a Representative Library Followed by Bulk Segregant Analysis in Rapeseed

    Get PDF
    Background: Single nucleotide polymorphisms (SNPs) are an important class of genetic marker for target gene mapping. As of yet, there is no rapid and effective method to identify SNPs linked with agronomic traits in rapeseed and other crop species. Methodology/Principal Findings: We demonstrate a novel method for identifying SNP markers in rapeseed by deep sequencing a representative library and performing bulk segregant analysis. With this method, SNPs associated with rapeseed pod shatter-resistance were discovered. Firstly, a reduced representation of the rapeseed genome was used. Genomic fragments ranging from 450–550 bp were prepared from the susceptible bulk (ten F2 plants with the silique shattering resistance index, SSRI,0.10) and the resistance bulk (ten F2 plants with SSRI.0.90), and also Solexa sequencingproduced 90 bp reads. Approximately 50 million of these sequence reads were assembled into contigs to a depth of 20-fold coverage. Secondly, 60,396 ‘simple SNPs ’ were identified, and the statistical significance was evaluated using Fisher’s exact test. There were 70 associated SNPs whose –log10p value over 16 were selected to be further analyzed. The distribution of these SNPs appeared a tight cluster, which consisted of 14 associated SNPs within a 396 kb region on chromosome A09. Our evidence indicates that this region contains a major quantitative trait locus (QTL). Finally, two associated SNPs from this region were mapped on a major QTL region

    Impact of environmental and genetic factors on the scale shape of zebrafish, Danio rerio (Hamilton 1822): A geometric morphometric study

    Get PDF
    Intraspecific morphological variability may reflect either genetic divergence among groups of individuals or response of individuals to environmental circumstances within the frame of phenotypic plasticity. Several studies were able to discriminate wild fish populations based on their scale shape. Here we examine whether the variations in the scale shape in fish populations could be related to genetic or environmental factors, or to both of them. In the first experiment, two inbred lines of zebrafish Danio rerio (Hamilton 1822) reared under identical environmental conditions were compared. Secondly, to find out what effect environmental factors might have, offsprings were divided into two groups and reared on different diets for 12 weeks. Potential recovery of scales from an environmental effect was also assessed. Experimental groups could successfully be distinguished according to the shape of scales in both experiments, and the results showed that both genetic and environmental factors may notably influence scale shape. It was concluded that scale shape analysis might be used as an explanatory tool to detect potential variability of environmental influences impacting genetically homogeneous groups of fish. However, due to its sensitivity to environmental heterogeneity, the applicability of this technique in identifying intraspecific stock membership of fish could be limited

    QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes

    Get PDF
    Improving oil and protein quality for food and feed purposes is an important goal in rapeseed (Brassica napus L.) breeding programs. Rapeseed contains phytosterols, used to enrich food products, and sinapate esters, which are limiting the utilization of rapeseed proteins in the feed industry. Increasing the phytosterol content of oil and lowering sinapate ester content of meal could increase the value of the oilseed rape crop. The objective of the present study was to identify quantitative trait loci (QTL) for phytosterol and sinapate ester content in a winter rapeseed population of 148 doubled haploid lines, previously found to have a large variation for these two traits. This population also segregated for the two erucic acid genes. A close negative correlation was found between erucic acid and phytosterol content (Spearman’s rank correlation, rs = −0.80**). For total phytosterol content, three QTL were detected, explaining 60% of the genetic variance. The two QTL with the strongest additive effects were mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. For sinapate ester content four QTL were detected, explaining 53% of the genetic variance. Again, a close negative correlation was found between erucic acid and sinapate ester content (rs = −0.66**) and the QTL with the strongest additive effects mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. The results suggests, that there is a pleiotropic effect of the two erucic acid genes on phytosterol and sinapate ester content; the effect of the alleles for low erucic acid content is to increase phytosterol and sinapate ester content. Possible reasons for this are discussed based on known biosynthetic pathways

    Isolation of a euryhaline microalgal strain, Tetraselmis sp CTP4, as a robust feedstock for biodiesel production

    Get PDF
    Bioprospecting for novel microalgal strains is key to improving the feasibility of microalgae-derived biodiesel production. Tetraselmis sp. CTP4 (Chlorophyta, Chlorodendrophyceae) was isolated using fluorescence activated cell sorting (FACS) in order to screen novel lipid-rich microalgae. CTP4 is a robust, euryhaline strain able to grow in seawater growth medium as well as in non-sterile urban wastewater. Because of its large cell size (9-22 mu m), CTP4 settles down after a six-hour sedimentation step. This leads to a medium removal efficiency of 80%, allowing a significant decrease of biomass dewatering costs. Using a two-stage system, a 3-fold increase in lipid content (up to 33% of DW) and a 2-fold enhancement in lipid productivity (up to 52.1 mg L-1 d(-1)) were observed upon exposure to nutrient depletion for 7 days. The biodiesel synthesized from the lipids of CTP4 contained high levels of oleic acid (25.67% of total fatty acids content) and minor amounts of polyunsaturated fatty acids with >= 4 double bonds (< 1%). As a result, this biofuel complies with most of the European (EN14214) and American (ASTM D6751) specifications, which commonly used microalgal feedstocks are usually unable to meet. In conclusion, Tetraselmis sp. CTP4 displays promising features as feedstock with lower downstream processing costs for biomass dewatering and biodiesel refining
    corecore