308 research outputs found

    Gross total but not incomplete resection of glioblastoma prolongs survival in the era of radiochemotherapy†

    Get PDF
    Background This prospective multicenter study assessed the prognostic influence of the extent of resection when compared with biopsy only in a contemporary patient population with newly diagnosed glioblastoma. Patients and methods Histology, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, and clinical data were centrally analyzed. Survival analyses were carried out with the Kaplan-Meier method. Prognostic factors were assessed with proportional hazard models. Results Of 345 patients, 273 underwent open tumor resection and 72 biopsies; 125 patients had gross total resections (GTRs) and 148, incomplete resections. Surgery-related morbidity was lower after biopsy (1.4% versus 12.1%, P = 0.007). 64.3% of patients received radiotherapy and chemotherapy (RT plus CT), 20.0% RT alone, 4.3% CT alone, and 11.3% best supportive care as an initial treatment. Patients ≤60 years with a Karnofsky performance score (KPS) of ≥90 were more likely to receive RT plus CT (P < 0.01). Median overall survival (OS) (progression free survival; PFS) ranged from 33.2 months (15 months) for patients with MGMT-methylated tumors after GTR and RT plus CT to 3.0 months (2.4 months) for biopsied patients receiving supportive care only. Favorable prognostic factors in multivariate analyses for OS were age ≤60 years [hazard ratio (HR) = 0.52; P < 0.001], preoperative KPS of ≥80 (HR = 0.55; P < 0.001), GTR (HR = 0.60; P = 0.003), MGMT promoter methylation (HR = 0.44; P < 0.001), and RT plus CT (HR = 0.18, P < 0.001); patients undergoing incomplete resection did not better than those receiving biopsy only (HR = 0.85; P = 0.31). Conclusions The value of incomplete resection remains questionable. If GTR cannot be safely achieved, biopsy only might be used as an alternative surgical strateg

    A comparative assessment of biomass ash preparation methods using X-ray fluorescence and wet chemical analysis

    Get PDF
    X-ray fluorescence (XRF) spectroscopy is a rapid method used to determine the composition of biomass ash, but the accuracy of the method is sensitive to various factors including ash preparation methods. In this study different types of biomass ash were examined by using wet chemical analysis (WCA) and compared with the respective XRF results. The biomass ash was initially prepared in accordance with the European Standard method at 550 °C. At this low combustion temperature the amount of residual unburned carbon is significant. To eliminate this, the ashes were heated at higher temperatures: a batch of twenty biomass ashes were heated at 850 °C and a batch of five heated to 815 °C. At these higher temperatures there may be loss of inorganic components by vaporisation. Variation in these effects may lead to unreliable results. The relationship between XRF and WCA results are given by regression equations. The ashes processed at 815 °C show better agreement between the two analysis methods

    Real-world outcomes versus clinical trial results of immunotherapy in stage IV non-small cell lung cancer (NSCLC) in the Netherlands

    Get PDF
    This study aims to assess how clinical outcomes of immunotherapy in real-world (effectiveness) correspond to outcomes in clinical trials (efficacy) and to look into factors that might explain an efficacy-effectiveness (EE) gap. All patients diagnosed with stage IV non-small cell lung cancer (NSCLC) in 2015-2018 in six Dutch large teaching hospitals (Santeon network) were identified and followed-up from date of diagnosis until death or end of data collection. Progression-free survival (PFS) and overall survival (OS) from first-line (1L) pembrolizumab and second-line (2L) nivolumab were compared with clinical trial data by calculating hazard ratios (HRs). From 1950 diagnosed patients, 1005 (52%) started with any 1L treatment, of which 83 received pembrolizumab. Nivolumab was started as 2L treatment in 141 patients. For both settings, PFS times were comparable between real-world and trials (HR 1.08 (95% CI 0.75-1.55), and HR 0.91 (95% CI 0.74-1.14), respectively). OS was significantly shorter in real-world for 1L pembrolizumab (HR 1.55; 95% CI 1.07-2.25). Receiving subsequent lines of treatment was less frequent in real-world compared to trials. There is no EE gap for PFS from immunotherapy in patients with stage IV NSCLC. However, there is a gap in OS for 1L pembrolizumab. Fewer patients proceeding to a subsequent line of treatment in real-world could partly explain this

    Multiscale Drivers of Water Chemistry of Boreal Lakes and Streams

    Get PDF
    The variability in surface water chemistry within and between aquatic ecosystems is regulated by many factors operating at several spatial and temporal scales. The importance of geographic, regional-, and local-scale factors as drivers of the natural variability of three water chemistry variables representing buffering capacity and the importance of weathering (acid neutralizing capacity, ANC), nutrient concentration (total phosphorus, TP), and importance of allochthonous inputs (total organic carbon, TOC) were studied in boreal streams and lakes using a method of variance decomposition. Partial redundancy analysis (pRDA) of ANC, TP, and TOC and 38 environmental variables in 361 lakes and 390 streams showed the importance of the interaction between geographic position and regional-scale variables. Geographic position and regional-scale factors combined explained 15.3% (streams) and 10.6% (lakes) of the variation in ANC, TP, and TOC. The unique variance explained by geographic, regional, and local-scale variables alone was <10%. The largest amount of variance was explained by the pure effect of regional-scale variables (9.9% for streams and 7.8% for lakes), followed by local-scale variables (2.9% and 5.8%) and geographic position (1.8% and 3.7%). The combined effect of geographic position, regional-, and local-scale variables accounted for between 30.3% (lakes) and 39.9% (streams) of the variance in surface water chemistry. These findings lend support to the conjecture that lakes and streams are intimately linked to their catchments and have important implications regarding conservation and restoration (management) endeavors

    DNA methylation, transcriptome and genetic copy number signatures of diffuse cerebral WHO grade II/III gliomas resolve cancer heterogeneity and development

    Get PDF
    Background: Diffuse lower WHO grade II and III gliomas (LGG) are slowly progressing brain tumors, many of which eventually transform into a more aggressive type. LGG is characterized by widespread genetic and transcriptional heterogeneity, yet little is known about the heterogeneity of the DNA methylome, its function in tumor biology, coupling with the transcriptome and tumor microenvironment and its possible impact for tumor development. Methods: We here present novel DNA methylation data of an LGG-cohort collected in the German Glioma Network containing about 85% isocitrate dehydrogenase (IDH) mutated tumors and performed a combined bioinformatics analysis using patient-matched genome and transcriptome data. Results: Stratification of LGG based on gene expression and DNA-methylation provided four consensus subtypes. We characterized them in terms of genetic alterations, functional context, cellular composition, tumor microenvironment and their possible impact for treatment resistance and prognosis. Glioma with astrocytoma-resembling phenotypes constitute the largest fraction of nearly 60%. They revealed largest diversity and were divided into four expression and three methylation groups which only partly match each other thus reflecting largely decoupled expression and methylation patterns. We identified a novel G-protein coupled receptor and a cancer-related ‘keratinization’ methylation signature in in addition to the glioma-CpG island methylator phenotype (G-CIMP) signature. These different signatures overlap and combine in various ways giving rise to diverse methylation and expression patterns that shape the glioma phenotypes. The decrease of global methylation in astrocytoma-like LGG associates with higher WHO grade, age at diagnosis and inferior prognosis. We found analogies between astrocytoma-like LGG with grade IV IDH-wild type tumors regarding possible worsening of treatment resistance along a proneural-to-mesenchymal axis. Using gene signature-based inference we elucidated the impact of cellular composition of the tumors including immune cell bystanders such as macrophages. Conclusions: Genomic, epigenomic and transcriptomic factors act in concert but partly also in a decoupled fashion what underpins the need for integrative, multidimensional stratification of LGG by combining these data on gene and cellular levels to delineate mechanisms of gene (de-)regulation and to enable better patient stratification and individualization of treatment

    Comparative expression pattern of Matrix-Metalloproteinases in human glioblastoma cell-lines and primary cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastomas (GBM), the most frequent malignant brain tumors in adults, are characterized by an aggressive local growth pattern and highly invasive tumor cells. This invasion is facilitated by expression of matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases. They mediate the degradation of protein components of the extracellular matrix. Twenty-three family members are known. Elevated levels of several of them have been reported in GBM. GBM cell-lines are used for <it>in vitro </it>studies of cell migration and invasion. Therefore, it is essential to know their MMP expression patterns. Only limited data for some of the cell-lines are published, yet. To fill the gaps in our knowledge would help to choose suitable model systems for analysis of regulation and function of MMPs during GBM tumorigenesis, cell migration and invasion.</p> <p>Findings</p> <p>We analysed MMP-1, -8, -9, -10, -11, -13, -17, -19, -20, -21, -23, -24, -26, -27, and MMP-28 expression in seven GBM cell-lines (SNB-19, GaMG, U251, U87, U373, U343, U138) and in four primary cell cultures by semiquantitative RT-PCR, followed changes in the MMP expression pattern with increasing passages of cell culture and examined the influence of TNF-α and TGF-β1 stimulation on the expression of selected MMPs in U251 and U373 cells.</p> <p>MMP-13, -17, -19 and -24 were expressed by all analyzed cell-lines, whereas MMP-20 and MMP-21 were not expressed by any of them. The other MMPs showed variable expression, which was dependent on passage number. Primary cells displayed a similar MMP-expression pattern as the cell-lines. In U251 and U373 cells expression of MMP-9 and MMP-19 was stimulated by TNF-α. MMP-1 mRNA expression was significantly increased in U373 cells, but not in U251 cells by this cytokine. Whereas TGF-β1 had no impact on MMP expression in U251 cells, it significantly induced MMP-11 and MMP-24 expression in U373 cells.</p> <p>Conclusions</p> <p>Literature-data and our own results suggest that the expression pattern of MMPs is highly variable, dependent on the cell-line and the cell-culture conditions used and that also regulation of MMP expression by cytokines is cell-line dependent. This is of high impact for the transfer of cell-culture experiments to clinical implementation.</p

    MMP-2 siRNA Inhibits Radiation-Enhanced Invasiveness in Glioma Cells

    Get PDF
    Our previous work and that of others strongly suggests a relationship between the infiltrative phenotype of gliomas and the expression of MMP-2. Radiation therapy, which represents one of the mainstays of glioma treatment, is known to increase cell invasion by inducing MMP-2. Thus, inhibition of MMP-2 provides a potential means for improving the efficacy of radiotherapy for malignant glioma.We have tested the ability of a plasmid vector-mediated MMP-2 siRNA (p-MMP-2) to modulate ionizing radiation-induced invasive phenotype in the human glioma cell lines U251 and U87. Cells that were transfected with p-MMP-2 with and without radiation showed a marked reduction of MMP-2 compared to controls and pSV-transfected cells. A significant reduction of proliferation, migration, invasion and angiogenesis of cells transfected with p-MMP-2 and in combination with radiation was observed compared to controls. Western blot analysis revealed that radiation-enhanced levels of VEGF, VEGFR-2, pVEGFR-2, p-FAK, and p-p38 were inhibited with p-MMP-2-transfected cells. TUNEL staining showed that radiation did not induce apoptosis in U87 and U251 cells while a significant increase in TUNEL-positive cells was observed when irradiated cells were simultaneously transfected with p-MMP-2 as compared to controls. Intracranial tumor growth was predominantly inhibited in the animals treated with p-MMP-2 alone or in combination with radiation compared to controls.MMP-2 inhibition, mediated by p-MMP-2 and in combination with radiation, significantly reduced tumor cell migration, invasion, angiogenesis and tumor growth by modulating several important downstream signaling molecules and directing cells towards apoptosis. Taken together, our results demonstrate the efficacy of p-MMP-2 in inhibiting radiation-enhanced tumor invasion and progression and suggest that it may act as a potent adjuvant for radiotherapy in glioma patients

    Molecular and translational advances in meningiomas.

    Get PDF
    Meningiomas are the most common primary intracranial neoplasm. The current World Health Organization (WHO) classification categorizes meningiomas based on histopathological features, but emerging molecular data demonstrate the importance of genomic and epigenomic factors in the clinical behavior of these tumors. Treatment options for symptomatic meningiomas are limited to surgical resection where possible and adjuvant radiation therapy for tumors with concerning histopathological features or recurrent disease. At present, alternative adjuvant treatment options are not available in part due to limited historical biological analysis and clinical trial investigation on meningiomas. With advances in molecular and genomic techniques in the last decade, we have witnessed a surge of interest in understanding the genomic and epigenomic landscape of meningiomas. The field is now at the stage to adopt this molecular knowledge to refine meningioma classification and introduce molecular algorithms that can guide prediction and therapeutics for this tumor type. Animal models that recapitulate meningiomas faithfully are in critical need to test new therapeutics to facilitate rapid-cycle translation to clinical trials. Here we review the most up-to-date knowledge of molecular alterations that provide insight into meningioma behavior and are ready for application to clinical trial investigation, and highlight the landscape of available preclinical models in meningiomas
    corecore