541 research outputs found

    From Large Scale Rearrangements to Mode Coupling Phenomenology

    Full text link
    We consider the equilibrium dynamics of Ising spin models with multi-spin interactions on sparse random graphs (Bethe lattices). Such models undergo a mean field glass transition upon increasing the graph connectivity or lowering the temperature. Focusing on the low temperature limit, we identify the large scale rearrangements responsible for the dynamical slowing-down near the transition. We are able to characterize exactly the dynamics near criticality by analyzing the statistical properties of such rearrangements. Our approach can be generalized to a large variety of glassy models on sparse random graphs, ranging from satisfiability to kinetically constrained models.Comment: 4 pages, 4 figures, minor corrections, accepted versio

    The binary network flow problem is logspace complete for P

    Get PDF
    AbstractIt is shown that the problem of whether the maximum flow in a given network exceeds a given natural number is logspace many-one complete for P if the edge capacities are presented in binary (even if the problem is restricted to acyclic graphs). This improves a result by Goldschlager et al. (1982) that this problem is logspace Turing complete for P

    Religijno\u15b\u107 staro\u17cytnych Grek\uf3w

    Get PDF

    Structural Encoding of Static Single Assignment Form

    Get PDF
    AbstractStatic Single Assignment (SSA) form is often used as an intermediate representation during code optimization in Java Virtual Machines. Recently, SSA has successfully been used for bytecode verification. However, constructing SSA at the code consumer is costly. SSA-based mobile code transport formats have been shown to eliminate this cost by shifting SSA creation to the code producer. These new formats, however, are not backward compatible with the established Java class-file format. We propose a novel approach to transport SSA information implicitly through structural code properties of standard Java bytecode. While the resulting bytecode sequence can still be directly executed by traditional Virtual Machines, our novel VM can infer SSA form and confirm its safety with virtually no overhead

    Static Disorder in Excitation Energies of the Fenna-Matthews-Olson Protein: Structure-Based Theory Meets Experiment

    Get PDF
    Inhomogeneous broadening of optical lines of the Fenna-Matthews-Olson (FMO) light-harvesting protein is investigated by combining a Monte Carlo sampling of low-energy conformational substates of the protein with a quantum chemical/electrostatic calculation of local transition energies (site energies) of the pigments. The good agreement between the optical spectra calculated for the inhomogeneous ensemble and the experimental data demonstrates that electrostatics is the dominant contributor to static disorder in site energies. Rotamers of polar amino acid side chains are found to cause bimodal distribution functions of site energy shifts, which can be probed by hole burning and single-molecule spectroscopy. When summing over the large number of contributions, the resulting distribution functions of the site energies become Gaussians, and the correlations in site energy fluctuations at different sites practically average to zero. These results demonstrate that static disorder in the FMO protein is in the realm of the central limit theorem of statistics. © 2020 American Chemical Society

    Accumulation of driver and passenger mutations during tumor progression

    Get PDF
    Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. In the current study, we provide a novel mathematical model that begins to address this challenge. We model tumors as a discrete time branching process that starts with a single driver mutation and proceeds as each new driver mutation leads to a slightly increased rate of clonal expansion. Using the model, we observe tremendous variation in the rate of tumor development - providing an understanding of the heterogeneity in tumor sizes and development times that have been observed by epidemiologists and clinicians. Furthermore, the model provides a simple formula for the number of driver mutations as a function of the total number of mutations in the tumor. Finally, when applied to recent experimental data, the model allows us to calculate, for the first time, the actual selective advantage provided by typical somatic mutations in human tumors in situ. This selective advantage is surprisingly small, 0.005 +- 0.0005, and has major implications for experimental cancer research

    On Embeddability of Buses in Point Sets

    Full text link
    Set membership of points in the plane can be visualized by connecting corresponding points via graphical features, like paths, trees, polygons, ellipses. In this paper we study the \emph{bus embeddability problem} (BEP): given a set of colored points we ask whether there exists a planar realization with one horizontal straight-line segment per color, called bus, such that all points with the same color are connected with vertical line segments to their bus. We present an ILP and an FPT algorithm for the general problem. For restricted versions of this problem, such as when the relative order of buses is predefined, or when a bus must be placed above all its points, we provide efficient algorithms. We show that another restricted version of the problem can be solved using 2-stack pushall sorting. On the negative side we prove the NP-completeness of a special case of BEP.Comment: 19 pages, 9 figures, conference version at GD 201

    Predicting the Response to Combination Antiretroviral Therapy: Retrospective Validation of geno2pheno-THEO on a Large Clinical Database

    Get PDF
    BackgroundExpert-based genotypic interpretation systems are standard methods for guiding treatment selection for patients infected with human immunodeficiency virus type 1. We previously introduced the software pipeline geno2pheno-THEO (g2p-THEO), which on the basis of viral sequence predicts the response to treatment with a combination of antiretroviral compounds by applying methods from statistical learning and the estimated potential of the virus to escape from drug pressure MethodsWe retrospectively validated the statistical model used by g2p-THEO in ∼7600 independent treatment-sequence pairs extracted from the EuResist integrated database, ranging from 1990 to 2007. Results were compared with the 3 most widely used expert-based interpretation systems: Stanford HIVdb, ANRS, and Rega ResultsThe difference in receiver operating characteristic curves between g2p-THEO and expert-based approaches was significant (P<.001; paired Wilcoxon test). Indeed, at 80% specificity, g2p-THEO found 16.2%-19.8% more successful regimens than did the expert-based approaches. The increased performance of g2p-THEO was confirmed in a 2001-2007 data set from which most obsolete therapies had been removed ConclusionFinding drug combinations that increase the chances of therapeutic success is the main reason for using decision support systems. The present analysis of a large data set derived from clinical practice demonstrates that g2p-THEO solves this task significantly better than state-of-the-art expert-based systems. The tool is available at http://www.geno2pheno.or

    More Legal Transformations for Locality

    Get PDF
    Distinguished paper award Commercial link : http://www.springerlink.de ALCHEMY/http://www.springer.comProgram transformations are one of the most valuable compiler techniques to improve data locality. However, restructuring compilers have a hard time coping with data dependences. A typical solution is to focus on program parts where the dependences are simple enough to enable any transformation. For more complex problems is only addressed the question of checking whether a transformation is legal or not. In this paper we propose to go further. Starting from a transformation with no guarantee on legality, we show how we can correct it for dependence satisfaction with no consequence on its locality properties. Generating code having the best locality is a direct application of this result
    corecore