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Abstract. It is shown that the problem of whether the maximum flow in a given network exceeds
a given natural number is logspace many-one complete for P if the edge capacities are presented
inbinary (even if the problem is restricted to acyclic graphs). This improves a result by Goldschlager
et al. (1982) that this problem is logspace Turing complete for P.

1. Intreduction

The binary (unary, resp.) network flow problem asks whether the maximum flow
in a given network exceeds a given natural number if the edge capacities of the
network are presented in binary (unary, resp.). Recently, the interest in the unary
network flow problem arose because its comp!zxity lies inside the interesting area
between NL and P. It turned out that the unary network flow problem is equivalent
to the bipartite perfect matching nrobiem with respect to several simple reducibilitics.
In [1] this was proved for a restricted kind of AC, truth-table reducibility, and in
[2] this was proved for NC, many-one reducibility. (Note that these results seem
to be incomparable because AC, is a subclass of NC, on the one hand and, on the
other hand, many-one reducibility is a restricted kind of truth-table reducibility.)
In [5] it was proved that the bipartite perfect matching problem is in randomized
NC (RNC). Thus the unary network fiow problem is also in RNC, and hence it is
very unlikely to be complete for P.

It was proved in [4] that the problem of whether the maximum flow in a given
network is odd, is logspace many-one complete (for short, logspace m-complete)
for P, if the edge capacities are presented in binary. Since this problem is obviously

* This paper is the full version of a part of [7].
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logspace Turing-reducibie to the binary actwork flow probiem, the latter problem
is logspace Turing-complete for P. In the present paper we prove that the binary
network flow problem is logspace m-complete for P. We prove this even for the
restriction of the problem to acyclic networks. Notice that the proof in [4] makes
essential use oi the fact that the networks contain cycles.

For the proof of our main result (Section 3) we need a lemma stating that a
certain severely restricted version of the circuit value problem is logspace m-complete
for P. This is proved in Section 2.

2. Restricted versions of the circuit value preblem

A circuit C=(V, E, vy, f) consisis of a directed acyclic graph (V, E) (whose
vertices aic calles gates), an cutput gate v,, and a function f mapping every input
gate (this is a gate with fan-in 0) into {0, 1} and every non-input gate into {AND,
OR, NOT, IDj. An AND (OR, NOT, ID, resp.) gate has fan-in two {two, one, one,
resp.) and computes the conjunction (disjunction, negation, identity, resp.) of its
inputs.

Circuit volue problem (CVP)
Instance: A circuit C.
Question: Does the output gate compute 1?

Lemma 2.1 (Ladner [6]). CVP is logspace m-complete for P.

In the following we restrict the circuit value problem step by step. Ths monotoiic
circuit value problem (MCVP) is the circuit value problem restricted to circuits that
do not use negation.

Lemma 2.2 (Goldschlager [3]). MCVP is logspace m-complete for P.

The problem MCV2 is the problem MCVP restricted to circuits whose gates have
‘an-out at most two.

Lemma 2.3 (Goldschlager et al. [4]). MCV2 is logspace m-complete for P. (Ir [4]
MCV2 is defined as an even more severely restricted version of MCV.)

A layered circ..t is a circuit (V, C, vy, f) such that

® Visasubsetof {0, 1,..., k} x 3* (for a suitable k = 0 and a suitable finite alphabet
2). The vertices whose first component is i make up the ith level of the circuit.

® All edges are between adjacent levels, i.e., for every ec E there exist ie
{1,2,...,k} and x, ye 3* such that e = ((i— 1, x), (i, ).

® Level 0 consists exactly of the gates with fan-in zero (the input gates).
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® Level k (the output level) consists exactly of the gates with fan-out zeic.

The problem MLCV2 is the problem MCV2 restricied to layered circuits. The
problem MLCVE2 is the problem MLCV2 restricted to circuits whose gates have
fan-out two or zero.

Lemma 2.4. MLCV2 is logspace m-complete for P.

Proof. We give a logspace m-reduction from MCV2 to MLCV2. Consider a
monotone circuit (V, E, v,, ) whose gates have fan-out at most two. Without loss
of generality we can assume that V={0,1,..., k} for some k=0, that v,=k and
that (i, j) € E implies i <j. Furthermore, we can assume that every AND gate an :
every OR gate has two different predecessors (in the other case such a gate could
be replaced with an ID gate). We convert  innto a monotone layered circuit
C'=(V,E',vy,f') as follows: V' is a subset of {0,1,...,k}x
({0,1,...,k}u{0,1,..., k}). Gate i from C becomes gate (i,i)in C". If i=0 or
if i has non-zero fan-in then f’'((i, i)) = f(i). An edge (i,j) becomes a chain with
gates (i, i), (i+1,(3, ), (i+2,(4,j)), ..., (G—1,(4j)), (j,j) and f'((m, (i,j))) = 1D
for m=i+1,i+2,...,j- 1. A gate (i, i) with i>0 and fan-in zero is connected
with the input level by a chain with gates (0,i), (1,i), ..., (i—1,i), (i, i) and
F(0,i))=f(i) and f'((m,i))=1ID for m=1,2Z,...,i A gate (i, i) with i<k and
fan-out zero is connected with the output-level by a chain with gates (i, i), (i +1, i),
o k=18, (ki) and f'((m,i))=1ID for m=i+1,..., k. Finally nut v,=(k, k).

It is obvious that this construction can be performed in logspace and that v,
computes the same value in C as v{ computes it C'. [J

Lemma 2.5. MLCVE?2 is logspace m-complete for P.

Prooi. We give a logspace m-reduction from MLCV2 to MLCVE2. Consider a
monotone layered circuit (V, E, vy, f) withlevelsv, 1, ..., k whose gates have fan-out

(i.x)

(i+1.y) (i+1,31,x))
(i+2,(i.x,1)) (=2,(i%.2))
(i+3,(1,x,1)) (1+3,(i,x,2))

(k-1,(,x,1 ))% (k-1,(1,%,2))
k,@i.x,1)) (k.(.x.2))

Fig. 1.
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at most two. We simply attach to every gate with fan-out one an additicnal successor.
Lei {i, x) be such a gate having only one successor (i+1, y). Then we add the new
gates (i+1, (i, x)),(i+2,(i,x,1)),(i+2,(i,x,2)),(i+3,(i,x, 1), (i+3,(i,x,2)),...,
(k—1,(i, x, 1)), k—1,(i,x,2)), (k, (i, x, 1)), (k, (i, x, 2)) with edges as shown in Fig.
1. Obviously, this construction can be performed in logspace and does not influence
the value of the output. [J

3. The resuilt

A flow network is a quadruple (G, S, T, c) where G=(V, E) is a digraph, S is a
set of vertices of &G with indegree zero (called the sources of G), T is a set of vertices
of G with outdegree zero (called the sinks of G), and c: E—N is the capacity function
of G. A flow in (G, S, T, c) is any function ¢ : E~N such that
® ¢(e)<c(e) for every ec E and
® ) wmee @, 0= .\ ¢ &((v, w)) for every ve V\(SUT).

Fora flow ¢ in (G, S, T, c¢) we define ¢(v) =%, .. ¢((v, w)) for all ve V\T and

&)=Y .nce (4, 1)) forevery te T. Obviously, Y . s &(s) =Y, , &(1). The value

max{), r #(#): ¢ flow in (G, S, T. c¢)} is called the maxiimnum flow in (G, S, T, c).
Now we are able to define the problem we are interested in.

Binary acyclic network flow (BANF)

Instance: A dag G = (V, E) with the unique source s and the unique sink ¢, binary
presentations of natural numbers c(v) for all v€ V, and the binary presentation of
a natural number m.

Question: Is the maximum flow in the flow network (G, {s}, {t}, ¢) greater than
or equal to m?

Theorem 3.1. BANF is logspace m-complete for P.

Proof. We give a logspace m-reduction from MLCVE2 to BANF. Let C=
(V, E, v, f) be a monotone layered circuit whose gates have fan-out two or zero
(the latter gates make up the output level). L.et V be a subs=t of {0, 1,..., k}x 3*
for some finite £, and let v,=(k, x,). We construct from C a flow network N =
((V', E'), {s}, {1}, ¢) by local repiacements. Every gate (i, x) of C is replaced with
the vertices (i, x, 1) and (i, x, 2) in N. The edges between (i, x) and its predecessors
(for i>0) are replaced with small flow networks N (i, x). In addition we have edges
leaving the source s and edges entering the sink i. Specifically the construction is
as follows.

(1) Edges from s to vertiices of the form (0, x, 1) and (0, x, 2): If £((0, x)) =1 then
there is an edge with capacity 4* from s to (0, x, 1). Otherwise there is an edge with
capacity 4* from s to (0, x, 2).
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(2) Flow networks N (i, x) for i>0:

(2.1) Flow network N(i,x) for f((i,x))=1ID: If f((i,x))=ID and ((i—
1,y),{i, x))e E then (i—1, y,1) and (i — 1, y, 2) are connected with (i, x, 1), (i, x, 2)
and 1 using a flow network that is shown in Fig. 2 where all edges have capacity 4* ",

(2.2) Flow network N(i, x) for f({i, x))=AND: If f{(i,x))=AKD and ((i—-
1, y),(i,x)), (i—-1,2),(i,x))e E then ¢+ Y, y1),(i—-1,y2),(i—-1,z1) and (i-
1, z, 2) are connected with (i, x, 1), (i, x, 2) and ¢ using a flow network that is shown
in Fig. 3 where a!l edges have capacity 4* .

(2.3) Flow network N(i,x) for f((i,x)}=OR: if f((i,x))=OR and ((i-
1, ¥),(i,x)), ((i-1,2),(i,x))e E then (i—=1,y1), (i-1,»2), (i—1,z1) and (i -
1, z, 2) are connected with (i, x, 1), (i, x, 2) and ¢ using a flow network that is shown
in Fig. 4 where al! edges have capacity 4+,

(i'l'Y-l) (l'layvz)

(i.x,1) t (1.x,2)

Fig. 2.

(-1y.1) (-1y.2) (i-1z,1) (-12.2)

ix.D £ (ix2)

Fig. 3.

(i-1,y.1) (i-1,y.2) (i-1,z,1) (i-1,2,2)
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(3) Edges from vertices of the form (k, x, 1), (k, x, 2) to t: There are edges with
capacity 1 from (k, x, 1) to ¢t and from (k, x,2) to t.

For the proof of the correctness of this construction we make some observations
about N. Let D be the number of different gates of the form (0, x) in C. Let C(i, x)
be the value computed by the zgate (i, x) of C.
® For every flow ¢ in N we have ¢(s) = ¢(t)< D4~
© There exists a flow ¢ in N such that ¢(s) = ¢(1) = D4*, ¢((i, x, 1)) =4""'C(i, x)

and ¢((i, x, 2)) =4""(1-C(j, x)). This can easily be pioved by induction on i

using the properties of the flow networks N(i x) and the fact that every gate

(i, x) in C with i< k has fan-out exactly two.
® For every flow ¢ in N such that ¢(s)=d¢(1t)=D4" we have 4" 'C(i,x)=<

o((i,x,1)<4"" and 4" '(1-C(i x))< d((i, x,2))<4""". Again, this can be

proved by induction on i

This means: every maximum flow in N “simulates” the computations made in
C. In particular, for v, = (k, x,) we have the folilowing:

@ There exists a flow ¢ in N such that ¢(s)=¢(r)= D4" and if C(v,) =1 then

b ((k, x4,2))=0.

@ For every flow ¢ in N such that ¢(s) = ¢(1)= D4" we have if C(v,)=0 then

d((k, x,,2))=1.

Now we delete the edge from (k, x,, 2) to t. In such a way we obtain a new flow
network N'. Obviously, we have:
® If C(v,) =1 then the maximum flow in N'is D4".
® If C(v,) =0 then the maximum flow in N’ is D4" 1.

Consequently, C is in MLCVE2 if and only if (N’, D4") is in BANF. This reduction
can easily be performed in logspace.

The above reduction rests on the fact that edge capacities can be exponential in
the size of the network. A reduction using only polynomial edge capacities would
show thui the unary network dow problem is logspace m-complete for P. Since this
problem is in RNC such a reduction is not believed to exist. However, if the circuit
C in the proof has logarithmic depth then tke capacities can be presented in unary
notation.
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