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Abstract. It is shown that the problem of whether the maximum flow in a given network exceeds 
a given natural number is logspace many-one complete for P if the edge capacities are presented 
in binary (even if the problem is restricted to acyclic graphs). This improves a result by Goldschlager 
et al. (1982) that this problem is logspace Turing complete for P. 

The binary (unary, resp.) network flow problem asks whether the maximum flow 
in a given network exceeds a given natural number if the edge capacities of the 
network are presented in binary (unary, resp.). Recently, the interest in the unary 
network flow problem arose because its corn laxity lies inside the interesting area 
between NL and P. It turned out that the una network flow problem is equivalent 

to the bipartite perfect matching problem with respect to several simple reducibilit%. 
In [l] this was proved for a restricted kind of AC,, truth-table reducibility, and in 
[2] this was proved for NC, many-one reducibility. (Note that these results seem 
to be incomparable because AC,, is a subclass of NC, on the one hand and, on the 
other hand, many-one reducibility is a restricted kind of truth-table re 
In [5] it was proved. that the bipartite perfect matching problem is i 
NC (RNC). Thus the unary network flow problem is also in 
very unlikely to be corn 

It was proved in [4] that the problem of whether the maximu 
network is odd, is logs ace many-one co 

for P, if the edge capacities are 
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cibie to the bfnx-- ;;~=‘;,-~r!< piol,~f problem, the latter problem 

complete for P. In the psesent paper ;Ne 
lem is logspace m-complete for P. ‘tire p is even for the 

lem to acyclic networks. Notice t 

essential use oi e fact that the netw rks contain cycles. 

For the proof of our ain result (Section 3) we need a le stating that a 

certain ;2vereIy restricte rsion of the circuit value problem is 1 ce m-complete 

roved in Section 2. 

A circuit C = ( V, E, v O,f) corksis of a directed acyclic graph ( V, E j (whose 
v4ces ~2 zalles gates), an output gate q,, and a function f mapping every input 
gate (this is a gate with fan-in 0) into (0, I} and every non-input gate into {AND, 

, NOT, ID;. An AND (OR, NOT, ID, resp.) gate has fan-in two (two, one, one, 
resp.) and computes the conjunction (disjunction, negation, identity, resp.) of its 
inputs. 

Instance: A circuit C. 
Question: Does the output gate wmpute l? 

In the following we restrict the circuit value problem step by step. Th2 monotoirc 
circuit value problem (MCVP) is the circuit value problem restricted to circuits that 
do not use negation. 

(Goldschlager [3]). MCVP is logspace m-complete for P. 

CV2 is the problem MCVP restricted to circuits whose gates have 
ut at most two. 

(Goldschlager et al. [4]). CV2 is logspace m-complete for P. (In [4] 
CV2 is defined as an even more severely restricted version of MCV.) 

A layered cirut is a circuit ( V, C, vO, f) such that 
V is a subset of (0, 1, . . . , k} x C* (for a suitable k a 0 and a suitable finite alphabet 

onent is i make up the ith level of the circuit. 
for every e E E there exist i E 



Level k (the output level) consists ex the gates with fan-out zero. 

The problem MLCV2 is the problem restricted to layered circuits. The 
problem LCVE2 is the problem l’vILCV2 restricted to circuits whose gates have 
fan-out two or zero. 

. MLCV2 is logspace m-complete for P. 

* We give a logspace m-reduction from cv2 to LCV2. Consider a 
monotone circuit ( V, E, uo, f ) whose gates have fan-out at most two. Without loss 
of generality we can assume that V = {O, 1,. . . , k} for some k 2 0, that u. = k and 
that (i, j) E E implies i cj. Furthermore, we can assume that every AND gate an I 
every OR gate has two different predecessors (in the other case such a gate could 
he 1 -maA “1 rcpr*u.B with an ID gate). We convert C into a monotone layered circuit 
C’=(V’, E’, v&f’) as follows: V’ is a subset of (0 1 l l T kb 

({O,l,..., k)u(O, I,..., k)‘). Gate i from C becomes gate (i, i) in 6. if i = 0 or 
if i has non-zero fan-in then f’(( i, i)) =f( i). An edge (i, j) becomes a chain with 
gates (i, i), (i+ 1, (i, j)), (i-I-2, (i, j)), . . . , Cj - 1, (kjj), i j, j) and f’W, G,j))) = ID 

for m=i+l, i+2, . ..? j - 1. A gate (i, i) with i > 0 and fan-in zero is connected 
with the input level by a chain with gates (0, i), ( 1, i), . . . , ( i - 1, i), ( i, i) and 
f’((0, i)) =f(i) and f’((m, ijj = ID for m = 1, S,. . . 9 i. A gate (i, i) with i< k and 
fan-out zero is connected with the output-level by a chain with gates ( i, i), ( i + 1, i), 

/k - 1, i), .“9 t (k, i) and f’( (m, i)) = ID for m = i + 1, . a . , k. Finally nut vl, = (k, k j-. 1 

It is obvious that this construction can be performed in logspace and that tr, 
computes the same value in C as u; computes in C’. •s 

MLCVE2 is logspace m-comphe for P. 

roof. We give a logspace m-reduction from MLCV2 to MLCVE2. Consider a 
monotone layered circuit ( V, E, u,, f ) with levels $1, 0 . . , k whose gates have fan-out 

0.x) 

Fig. 1. 
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at most two. We simply attach to every gate with fan-out one an additicnal successor. 
Let (!, x) be such a gate having only one successor (i + 1, y). Then we add the new 

gates (i+ 1, (i, x)j, ( ‘i-+2, (i, X, l)), (i+2, (i, X, 2)), (i+3, (i, X, B‘),(i*3, (i, X, 2)),. . . , 

(k-l,(i,% lb), tic - 1, (i? x,2)), (ic, (i , x, l)), (k, (i, x, 2)) with ed es as shown in Fig. 

I. Obviously, this construction can be performed in logspace and does not Uluence 
the value of the output. Cl 

A _flo~~ network is a quadruple (G, S, T, c) where G = ( V, E) is a digraph, S is a 
set of vertices of G with indegree zero (called the sources’ of G), T is a set of vertices 
of G with outdegree zero (calied the sinks of G), and c : E-Pd is the capacityfunction 

of G. A Jaw in (G, S, T, c) is any function #: E+-+N such that 
4(e)<c(e) for every Ed E and 

“C (U.V)crE d((% vl) =C,I:M’,CE 4((~, w)) for every DE V\(Su T). 
For a flow 4 in (G, S, T, c) we define ~(u)=C(~,,,+_~ +((u, w)) for all DE V\T and 

4(t) =&u P)EE @((II, t)) forevery tE T.Obviously,C,,, 4(s)=&&(t).Thevalue 
max{C,,,&( t): (b flow in (G, S, T, c)] is called the maximum flow in (G, S, T, c). 

Now we are able to define the problem we are interested in. 

inary acyclic network flow (BANI?) 

Instance.- A dag G = ( V, E) with the unique source s and the unique sink t, binary 
presentations of natural numbers c(u) for all v E V, and the binary presentation of 
a natural number m. 

Question: Is the maximum flow in the flow network (G, {s}, {t}, c) greater than 
or equal to m2 

eorem 3.1. BANF is logspace m-complete for P. 

roof. We give d logspace m-reduction from MLCVE2 to BANF. Let C = 
( V, E, uO, f) be a monotone layered circuit whose gates have fan-out two or zero 
(the latter gates make up the output level). Iet V be a subset of (0, 1, . . . , k} x C* 
for some finite 2, and let v0 = (k, x0). We construct from C a flow network N = 
(( V’, E’), {s}, {t}, c) by local repiacements. Every gate (i, xi of C is replaced with 
the vertices (i, X, 1) and (i, x, 2) in N. The edges between (i, x) and its predecessors 
(for i > 0) are replaced with small flow networks N(i, x). In addition we have edges 
leaving the source s and edges entering the sink c: Specifically the construction is 
as follows. 

(1) Edges frorn s to vertices of the form (0, x, 1) an ,x,2): rnff((O,x))= 1 then 
there is an edge with ca wise there is an edge with 

acity dk from s to (0, x, 2). 
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(2) Flow networks N( i, x) for i > 0: 
(2.1) Flow network N(i,x) for f((i,x)j=ID: If f((i,x)j=ID and ((i- 

l,y), (i, xjj~ E then (i - 1, y, 1) and (i - 1, y, 2j are connected with (i, x, l), (i, x, 2) 

and t using a flow network that is shown in Fig .2 where all edges have capacity 4h ‘. 
(2.2) Flow network N( i9 x) for J-(( i, .% ,, -\) = AND: If J((i, x)) = AtiD and ((i - 

l,_y),(i,~)), ((i-l, z),(~,x))E E then ii !J, l), (i_l,y,22), (i-l,z, 1) and (i- 
1, z, 2) are connected with ( i, x, 1 ), ( i, x, 2) and r’ using a flow network that is shown 
in Fig. 3 where aI1 edges have capacity 4’ ‘. 

(2.3) Flow network N&x) for f((i,x))=OR: if ,f((i,x))=OR and ((i- 

1, ~9, (j, x)j, ((i -l,z),(i,x))E E then (i-l,y, l), (r’-l,y,2), (i-l,z, 1) and (i- 
1 , z, 2) are connected with (i, x, l), (i, x, 2) and t using a flow network that is shown 
in Fig. 4 where all edges have capacity 4’ -‘. 

(i-1 ,y,U (i-Ly,2) 

(4x.l) t 

Fig. 2. 

(i,x.U t (ix.3 

Fig. 3. 

W,y,U 0-W) (i-l,z,l) (i-l ,2,2) 

O,x,U t (4x2) 

Fig. 4. 
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(3) Edges from ve ces of the form (k, x, l), (k, x, 2) to I: There are e 
) to t and from (k, x, 2) to t. 

correctness of this constructio 

For every flow in N we have 4(s) = 4(t)< 04”. 

such that ~(s)=~(t)=Dl”, 4((i,.~J))=4’-‘C(i,x) 

a x) and the fact that every gate 

For every flow in IV sue at 4(s) = 4(t) II- 04’ we have 4’ -‘C( i, x) s 
q5((i, x, 1))G4”-’ and 4’-“(l- i, x)) s @((i, x, 2)) 5~ 4’~“. _Again, this can be 

proved by induction on i. 
This means: every maxim Eates” the computations made in 

C. In particular, for q, 
ere exists a flow + in N s at 4(s) = b(r) = 04”‘ and if C(qJ= 1 then 

@((k X,), 2)) = 0. 
For every flow 4 in A! such that 4(s) = (t)=D4’ we have if C(u,,)=O then 

d((k, x0,2)) = 1. 
Now we delete the edge from (k, x~,, 2) to t. In such a way we obtain a new flow 

network P?. Obviously, we have: 
f C( qJ = 1 then the maximum fl0q.v in IV’ Es 04’. 

If C( uo) =O then the maximum flow in N’ is D4A - 1. 
Consequently. c is in MLCVE2 if and only if (IV’, 04’) Is in BANF. This reduction 
can easily be performed in logspacc. n 

The above reduction rests on the fact that edge capacities can be exponential in 
the size of the network. A reduction using only polynomiai edge capacities would 

2.‘~ the unary network flow problem is log lete for P. Since this 
is in RNC such a reduction is not believ owever, if the circuit 

C in the proof has logarithmic depth then the capacities can be presented in unary 
notation. 

We thank an anonymous referee for this suggestion that a previous version of 
this paper could be substantially simplified. 
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