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Abstract

Static Single Assignment (SSA) form is often used as an intermediate representation during
code optimization in Java Virtual Machines. Recently, SSA has successfully been used for
bytecode verification. However, constructing SSA at the code consumer is costly. SSA-
based mobile code transport formats have been shown to eliminate this cost by shifting
SSA creation to the code producer. These new formats, however, are not backward com-
patible with the established Java class-file format. We propose a novel approach to transport
SSA information implicitly through structural code properties of standard Java bytecode.
While the resulting bytecode sequence can still be directly executed by traditional Virtual
Machines, our novel VM can infer SSA form and confirm its safety with virtually no over-
head.
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1 Introduction

Java programs are shipped in a platform-independent bytecode format. To exe-
cute such programs, a Virtual Machine (VM) can choose to simply interpret the
bytecode instruction by instruction. This results in a significant loss of execution
performance in comparison to native machine code execution. Just-in-time (JIT)
compilers are used to dynamically translate portable bytecode into native machine
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code, which is directly executed by the underlying physical CPU, eliminating most
of the overhead that interpretation causes.

Code optimization is an essential part of many dynamic code-generation sys-
tems. Many optimizations cannot be applied ahead of time by the code producer
due to the wide range of possible target architectures the bytecode has to run
on. Performing aggressive common-subexpression elimination, for example, while
likely beneficial on a RISC architecture with many registers, might severely de-
grade performance on a CISC architecture such as x86 by increasing register pres-
sure and introducing unneeded spills to memory. As a consequence, optimization
has to be performed by the code consumer—the JIT compiler.

Being stack-based, bytecode is not well suited to perform code optimizations
on. Instead, it often is translated into an intermediate representation such as Static
Single Assignment (SSA) form [5]. In SSA form, variables are split into multi-
ple instances such that every new variable instance is defined exactly once. At
control-flow merge points specialφ-instructions are inserted to merge variable in-
stances and to assign the proper value to a new and unique instance of that variable.
Through this transformation, SSA form embeds definition-use information into the
program representation.

We recently have shown how to use SSA for bytecode verification [9,10]. To
enable this approach it is important to make the SSA form of an incoming program
available efficiently. From an algorithmic perspective, transforming bytecode into
SSA requires finding dominators in a flow graph [3,12], and the calculation of it-
erated dominance frontiers [2]. While both problems have been shown to be linear
in theory [20], they still incur a not-negligible runtime overhead. Approaches such
as SafeTSA [1] avoid this overhead by transforming bytecode into SSA at the code
producer. However, to ship the mobile code, SafeTSA defines a new and incom-
patible class-file format. While it is possible to avoid such compatibility problems
by shipping the SSA-based representation as an optional annotation, this option
severely inflates the size of class files as code is effectively represented twice. It
would also allow inconsistencies between the two formats. The lack of a compati-
ble transport format has hampered the adoption of SSA-based mobile code formats.

We propose a novel approach to SSA-based mobile-code representation. In-
stead of introducing a new and incompatible bytecode format, we use theexisting
bytecode format and transport SSA information through themodification of struc-
tural code propertiessuch as local-variable mappings and basic-block ordering.
The resulting bytecode is fully compatible to the Java Standard and can be exe-
cuted by traditional Java VMs. A specially crafted VM, however, can directly infer
SSA form and verify the correctness of the deducted SSA-based representation in
linear time.

The remainder of this paper is organized as follows: In Section2 we give a brief
overview of the Java bytecode format. Section3 describes the bytecode transforma-
tion process we use to encode SSA-information. Section4 discusses the encoding,
decoding, and verification of dominator information. Related work is discussed in
Section5. Section6 contains our conclusions and discusses future work.
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2 Java Bytecode

JVML instructions read and store intermediate values in two locations: the operand
stack and local variables. The types of these locations are flow sensitive in that the
same stack cell or local variable can hold values of different types during program
execution. Verification ensures that locations are used consistently and intermediate
values are always read back with the same type that they were originally written as.

Verification also ensures control-flow safety, but this is a comparatively triv-
ial task. Conversely, verifying that the data flow iswell-typedis rather complex.
The JVM bytecode verifier [13,14,23] uses an iterative data-flow analysis and an
abstract interpreter for JVML instructions. Unlike in the JVM, the stacks and lo-
cal variables of the abstract interpreter used for verification storetypes, rather than
values. From the perspective of the verifier, JVM instructions are operations that
execute on types and not on values.

JVML verification works at method level. If every method is verifiable, the
whole program is verifiable. For the remainder of this paper, we use program and
method interchangeably, and only consider a subset of JVML that does not contain
the subroutine construct. Subroutines are a significant complication when deal-
ing with Java bytecode [8,11,18,21] and have been shown to be a very ineffective
way of reducing code size [7]. The compiler in the current Java version 1.5 does
no longer generate subroutines. Our prototype implementation resolves the rare
occurrence of a subroutine by inlining it into the body of the calling method2 .

3 Bytecode in Static Single Assignment Form

Traditional JVML bytecode does not comply with SSA form. Values can be written
to local variables or into stack cells, and there is no requirement to use fresh local
variables or stack cells for each new definition. However, there is also nothing that
would stop a code producer to emit a Java bytecode program in which values are
held in local variables with each definition being assigned its own local variable. In
this section we describe a simple transformation that takes regular Java bytecode
and translates it into a form that permits the code consumer to infer SSA form even
though the code is still transported as pure JVML bytecode. To ensure that the code
consumer can not onlyextractSSA information, but alsoverify that it is safe to use
it, we additionally encode dominator-tree information by re-arranging the sequence
of basic blocks. Using the dominator tree we can traverse the code and type-check
uses and their corresponding definition in linear time and in a single sweep.

2 We have studied numerous bytecode applications including the Eclipse framework, different Java
APIs, and the SPEC benchmarks. Of approximately 5.4 million instructions we only found 0.24%
to be in subroutines. The average size of a subroutine was 7 instructions, and it was only called 2
times.
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3.1 Static Single Assignment Form

Most JVML instructions use the stack to access operands and store calculated val-
ues. To permit the code consumer to infer Static Single Assignment form for such
instructions, we encapsulate them with local variable access instructions such as
iload andistore .

The expressiona = b+c∗d, for example, can be calculated in JVML as follows:
iload 1 // b
iload 2 // c
iload 3 // d
imul // c * d
iadd // b + c * d

In this example,b, c, andd are read from local variable1, 2, and3 respectively
After multiplying c andd and adding the result toa, the final value is left on the
stack.

In our enriched transport format, we use Shaylor’s approach [19] to eliminate
the operand stack. In the transformed code, each instruction reads its arguments
directly from a local variable and the stack is always empty between instructions:

iload 2 // c
iload 3 // d
imul // c * d
istore 5 // temp = c * d
iload 1 // b
iload 5 // temp
iadd // b + temp
istore 4 // a = b + c * d

Instead of passing the temporary result ofc∗d through the stack, it is assigned to
a fresh local variable5 to ensure that the stack is empty betweenimul andiadd .
Effectively, we turn the stack-based JVML representation into a register-based rep-
resentation in SSA form. A traditional JVM would obviously calculate the same
result for these two code fragment, albeit taking slightly more time to complete the
operations of the transformed fragment, as the code is more verbose. An aware
JVM, however, can easily detect that each local variable is assigned exactly once,
allowing to skip the renaming phase, directly obtaining SSA form for the code.

By transforming the program into a register-based format, a number of JVML
instructions become obsolete. The JVML instruction set can be divided in two
kinds of instructions:core instructions anddata-flowinstructions. Core instruc-
tions operate on values stored on the operand stack, while data-flow instructions
such asdup , dup 2, iload x, and istore x only facilitate the flow of val-
ues between core instructions by manipulating the state of the operand stack and
exchanging values between operand stack and variables.

Values are produced by core instructions and can be consumed by other core
instructions. During the lifetime of a value it can reside on the operand stack or in
variables. Values can reside in multiple locations at the same time. Data-flow in-
structions neither produce nor consume values, but merely transport values between
stack locations and variables [9,10].

During the transformation, the code producer eliminates all data-flow instruc-
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tions and replaces them with direct references to SSA variables. The following
code fragment calculates2 ∗ 2:

iconst_2
dup
imul
istore 1

After the transformation, the value generated byiconst 2 is stored in local
variable 2. Thedup instruction is removed, and theimul instruction is trans-
formed to directly point to the instruction that defines its operands, which is the
istore 2 instruction newly introduced foriconst 2. Any future use of the re-
sult is replaced with a direct reference to local variable 1, which holds the result of
the multiplication:

iconst_2
istore 2
iload 2
iload 2
imul
istore 1

After the transformation, the code does not contain any more data-flow instruc-
tions except for load/store instructions encapsulating core instructions.

3.2 Control-Flow Merges

Besides the single-assignment property,φ-instructions are the most important fea-
ture of SSA form.φ-instructions are used to merge definitions along multiple in-
coming control-flow edges. JVML does not have aφ-instruction, thus we need
an alternative way to represent them. Adding a new instruction is not an option,
because we want to maintain backward compatibility.

Instead, we use the JVM operand stack to hand over values between basic
blocks at control-flow merges. Theφ-operands are pushed onto the stack at the
end of each basic block that targets a basic block with multiple predecessor blocks,
and each such merge block pops theφ-operands from the stack and stores them in
appropriate (fresh) local variables. Thus, theφ-instructionl3 = φ(l1, l2), which
joins the definitions of local variables1 and2 and leaves the result in local variable
3 is represented as:

iload 1
goto L1
...
iload 2
goto L1
...

L1:
istore 3

This approach works for regular control-flow edges, but cannot be applied to ex-
ception handlers. Exception handlers automatically purge the stack upon invocation
and push the exception object on the emptied stack. Instead, we use temporary lo-
cal variables to communicateφ-operands from regular code to exception handlers.
To ensure that the code consumer can easily recognizeφ-operands of exception
edges, each instruction that can trigger an exception is preceded by corresponding
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local variable load and store instructions to prepare for a potential exception exit:
iload 1
istore 9
iload 2
istore 10
iload 1
iload 2
idiv
istore 3

Here, local variables9 and10 are used as temporaries to hold theφ-operands
for the exception handler guarding theidiv instruction. For a traditional JVML
this representation incurs a slight runtime overhead during interpretation. Optimiz-
ing JIT compilers are likely to detect the unused variables and eliminate the extra
istore instructions (dead code elimination).

To evaluate the impact of the transformation on the size of bytecode programs,
we used the encoder to transform 670 classes from JDK 1.4.2 into SSA-inferable
form. On average, the class-file size was increased by 30%.

4 Dominator Information

To construct the SSA-form for a program, the code consumer needs access to dom-
inator information. This is also needed for linear-time verification of JVML byte-
code in SSA-form. While multiple approaches exist to compute the dominator tree
efficiently from a control-flow graph [12,3,4], our approach uses the fact that the
code producer either already has the dominator tree or can easily obtain it from the
control-flow graph. The dominator tree is then used to rearrange the basic blocks
in such a way that the code consumer can reconstruct the dominator tree instead of
computing it from scratch.

We first describe the decoding of the dominator relation from the ordering of
basic blocks. The decoding process essentially governs how basic blocks have to
be arranged by the encoder. Section4.2 then describes the process of actually
encoding the basic blocks, Section4.3 shows some performance measurements
for a prototype, and Section4.4 presents how to verify the computed dominator
information.

4.1 Decoding Dominator Information

The decoder constructs the dominator tree solely from the information available in
the program it receives—the ordering of basic blocks as computed by the encoder
and the control-flow edges between basic blocks. Decoding the dominator infor-
mation from the received basic-block stream works in two phases. First, an initial
approximation to the dominator tree is constructed. The second phase corrects er-
roneous and missing edges.

To limit the problem space and for efficiency reasons we restrict the way in that
the approximation computed in the first phase may deviate from the correct domi-
nator relation. Since the immediate-dominator relation forms a tree, each node has

6



Gal

exactlyonepredecessor, but possiblyseveralsuccessors. This property can be used
to limit the search space during correcting the approximation in the second phase.
When moving nodes that have been misplaced in the approximationupwards, it is
always clear which edge to follow. In contrast, when moving nodesdownwards, the
second phase would have to determine which edge to chose—this would require to
visit the subtrees reachable via these edges.

Before we describe the two phases in more detail, we note a special relation be-
tween a node, its predecessors, and its immediate dominator. Ifd is the immediate
dominator ofn, then each predecessor ofn is eitherd or is dominated byd.

Theorem 1 Let G be a graph with nodesN and edgesE ⊆ N × N . Let S be
the entry node ofG and DOM ⊂ N × N be the immediate dominator relation of
nodes inG with the usual representation(n1, n2) ∈ DOM if n1 is the immediate
dominator ofn2. dominates: N → 2N maps a noden to all nodes inN that are
dominated byn. Then the following statements are equivalent:

• (n1, n2) ∈ DOM

• ∀n ∈ N , with n 6= n1, (n, n2) ∈ E: n ∈ dominates(n1)

Proof. For an edge between nodesn1 andn2 we writen1 → n2 and for a (possibly
empty) pathn1  n2.
We prove both directions by indirection.⇒. Assume that there exists a noden ∈ N
with n 6= n1, (n, n2), (n1, n2) ∈ E but n 6∈ dominates(n1). Then, sincen1 does
not dominaten, there is a pathS  n that does not lead throughn1, and since
(n, n2) ∈ E there exists a pathS  n → n2 from S to n2 that does not lead
throughn1. Therefore,(n1, n2) 6∈ DOM. ⇐. Assume thatn1 is not the immediate
dominator ofn2, that is it exists a pathS  n2 that does not lead throughn1.
Assume that the last step of this path is the edge(n, n2) with n 6= n2. Since
the path does not go throughn1, n is a predecessor ofn2 that is not immediately
dominated byn1. 2

These facts directly lead to a way to compute an approximation of the dominator
tree in the first phase of the decoder (Figure1). The input to the decoder is a
sequence of basic blocks. The decoder constructs the dominator tree bottom-up, by
inserting nodes always above the nodes that have already been inserted. The settop
contains all nodes in the current dominator tree that have not yet been assigned an
immediate dominator. Whenever a basic blockn is read, the decoder determines
its control-flow successors. If the settop contains a successorss of n, a dominator
edge is inserted betweenn ands, ands is removed fromtop. Finally, n is added
to top. Due to Theorem1, the immediate dominator ofs is eithern or dominates
n. Thus,s is inserted below its immediate dominator, which we make use of by
moving nodes only upwards in the second phase.

The second phase keeps track of all nodes in the approximation that have a
control-flow predecessor that is not their immediate dominator. Following Theo-
rem1, each of their control-flow predecessors must be dominated by their imme-
diate dominator. For each such noden, the decoder walks up in the approximated
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decode()
// Phase 1
top = ∅
read next basic blockbb
while (basic blocks available)

dominates(bb) = {bb}
for all nodesn ∈ succs(bb) that are intop

addn to dominates(bb) and add(bb, n) to DOM

removen from top
read next basic blockbb

∀n ∈ top addn to dominates(bb) and setn’s IDOM to bb
// Phase 2
append all nodesn to worklist that have a predecessor that is not their IDOM
while (worklist not empty)

bb = worklist .removeF irst()
find bb’s predecessorn1 in the dominator tree that dominates

all of bb’s control-flow predecessors (stops at the entry node)
recalculatedominates for all nodes in the dominator tree betweenbb andn1

setbb’s IDOM to n1

append all nodesn to worklist that are dominated bybb and
have a predecessor that is not their IDOM

Fig. 1. Algorithm to decode the stream of basic blocks. The first phase constructs an ap-
proximated dominator tree, while the second phase moves nodes upwards in the dominator
tree. We useIDOM as abbreviation forimmediate dominator.

dominator tree until it finds a noden1 that dominates all ofn’s control-flow prede-
cessors. The decoder then setsn1 to be the immediate dominator ofn and checks
for each successors of n that Theorem1 is still fulfilled. Eachs that does have a
predecessor that isnot dominated by the dominator ofs is added to the worklist.
This is necessary since movingn around may have changed the information fors.

4.2 Encoding Dominator Information

The encoder is responsible to facilitate the decoding process described above. To
ensure that a node is placedbelow its predecessors in the approximation, it must
be encodedbeforethese. Following Theorem1 this also ensures that each node is
placed below its immediate dominator.

To construct the encoding, the encoder takes a subgraph of the control-flow
graph as input. This subgraph contains exactly the control-flow edges(n1, n2) for
which n1 doesnot dominaten2. Figure2 shows the control-flow graph and dom-
inator tree for an example program, as well as the extracted subgraph. Based on
the number of incoming and outgoing edges, the encoder determines the initial en-
coding of basic blocks. Nodes are sorted based on fewer incoming edges and more
outgoing edges, and the entry node is always encoded last. The motivation for
this heuristic is how the first decoding phase inserts edges into the approximated
dominator tree. Whenever an immediate predecessorp of an unhandled noden
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Fig. 2. The left graph is the combined control-flow graph and dominator graph for an
example program. The solid edges are control-flow edges, the dashed edges are dominator
edges. The right graph shows the subgraph that is actually used to construct the encoding.

encode()
∀n, n′ ∈ N with (n, n′) ∈ E ∧ (n, n′) 6∈ DOM:

OUT(n) + +; IN(n′) + +;
sortN by increasing IN(n) and decreasing OUT(n)
place each noden before its immediate dominator
∀n, n′ ∈ N with (n, n′) ∈ DOM ∧ (n, n′) 6∈ E:

placen′ beforen′′ with n′′ ∈ dominates(n) ∧ (n′′, n′) ∈ E

Fig. 3. Algorithm to compute the encoding of basic blocks at the code producer.G is a
graph with nodesN and edgesE ⊆ N ×N . DOM ⊂ N ×N is the immediate dominator
relation in G, anddominates(n) gives the set of nodes that are dominated byn. The
first phase computes the number of in- and outgoing edges for nodes that are connected
by control-flow edges but not by dominator edges. Using these numbers, the nodes are
initially sorted. The second phase places all nodes before their immediate dominator. The
final phase makes sure that nodes are moved further to the front if there is no control-flow
edge between the immediate dominator and the node.

is found, a dominator edge(p, n) is added to the decoded tree. Each control-flow
edge(n1, n2) that is not a dominator edge will lead to a faulty edge in the approxi-
mated dominator tree. We can avoid this insertion by encodingn1 first, so that the
first phase will not haven2 in top. For the example program this gives an initial
encoding of

[6, 5, 3, 4, 9, 7, 2, 8, 1]

However, as described in Section4.1, the decoder has two properties that impose
additional restrictions on the encoding chosen. First, since the decoder at the code
consumer can move nodes only upwards, each node must be encodedbeforeits im-
mediate dominator. For the initial encoding of the example program, this property
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7 2 ∅

6 7, 8 7 (6, 7)

5 7 6

4 5 5, 6 (4, 5)

3 4, 6 4, 6 (3, 4), (3, 6)

9 3

8 9 3, 9 (8, 9)

2 3, 8 3, 8 (2, 3), (2, 8)

1 2, 8 2 (1, 2)

1
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8

Fig. 4. Decoding of the encoded example program and the computed first approximation
to the dominator tree. The solid edges are edges that are missing from the computed domi-
nator tree, that is have not been decoded correctly.

is violated for nodes7 and4 (both dominated by3). Thus, the encoder walks over
the initial encoding from back to front and moves nodes towards the front until
they are encoded before their dominators. For the example program, this leads to
the encoding

[6, 5, 7, 4, 3, 9, 2, 8, 1]

As shown above, during phase 1 the decoder keeps track of nodes for which no
dominator has been decoded yet. All nodes that have not yet been connected when
the entry node is reached are assumed to be dominated by that node. While this
approach works fine for nodes with a direct edge between the immediate dominator
and the node, special care must be taken for nodes where this edge does not exist. In
the example graph,(3, 7) is the only pair of nodes that is connected by a dominator
tree edge but not by a CFG edge. To make sure that the decoder will place7 below
its immediate dominator3, 7 must be encodedbeforeits control-flow predecessors
on the shortest path from its dominator. For the example, node7 must be encoded
before node6. This leads to the final encoding

[7, 6, 5, 4, 3, 9, 8, 2, 1]

4.3 Performance

This section shows how the decoding of the example program works and reports
on our prototype implementation.

As shown above, the encoding for the example program from Figure2 is

[7, 6, 5, 4, 3, 9, 8, 2, 1]
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Fig. 5. Comparison of a prototype implementation of the decoding phase to an imple-
mentation of the dominator algorithm by Lengauer and Tarjan [12]. The left graph shows
the time needed to construct the dominator tree for a randomly constructed graph withx
nodes. The right graph shows the number of iterations performed during decoding. Due to
the selection heuristic used when putting nodes in the worklist, the algorithm performs a
transformation in each iteration. The dashed line is equality. The measurements have been
performed on a Pentium 4 with 2.66Ghz and 512MB RAM.

Figure 4 shows the information computed during the first phase of the decoder
(Figure1) and the resulting approximation. As can be seen, all dominator edges
but 2 have been decoded correctly.

The second phase starts with the worklist(2, 7, 8), all the nodes that have a
predecessor that is not their immediate dominator. For node2 the only predecessor
in the dominator tree is the entry node1 that dominates all other nodes, so no action
is taken. For node7 the decoder picks node3, because it dominates nodes5 and6,
the predecessors of7. Thus the immediate dominator of7 is set to3, reducing the
number of incorrect edges to 1. Since7 has no child nodes in the dominator tree, no
new nodes are added to the worklist. For the next node (8) the decoder picks node
1 as immediate dominator, because it dominates its predecessors1, 2, and6. The
only child node of8 does not require adding new nodes to the worklist, so phase
two finishes with a correct dominator tree.

We have measured the performance of a prototype implementation of this algo-
rithm on randomly generated reducible and irreducible graphs. Figure5 compares
the results in terms of time for the construction of the dominator tree with an imple-
mentation of the algorithm from [12]. The right-hand graph shows the number of
iterations needed in the second phase of the decoding step, when nodes are moved
upwards in the approximated dominator tree. The number of iterations is almost
linear in the number of nodes.

4.4 Verification

Even if an aware code consumer recognizes all these code patterns and constructs
an SSA-based intermediate representation, it needs to verify that the code is actu-
ally in valid SSA form before the IR is safe to be used for code optimization. For
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DOM(S) = {S}

DOM(n) =

 ⋂
p∈preds(n)

DOM(p)

 ∪ {n}

Fig. 6. Data-flow equations for the DOM sets for a graphG with nodesN , edgesE, and
start nodeS.

this, the code consumer has to verify the following three properties:

• Variables are assigned exactly once as required in SSA form.
• Variables are defined before their first use.
• Variables are used in a type-safe manner.

As type-checking is performed directly on the SSA representation, traditional
bytecode verification based on data-flow analysis is obsolete and is no longer per-
formed if the SSA representation is found to be safe.

Interestingly, the code consumer does not need to verify adequate placement
of φ-instructions. While placing too few or too manyφ-instructions can lead to
programs that do not calculate a meaningful result, they will never result in unsafe
code as long as eachφ-instruction is type-safe (which we do check).

Verifying that each local variable is assigned exactly once is trivial. This is
the first action performed by the code consumer once the program has been loaded.
Traditional JVMs use an iterative data-flow analysis to verify type-safety and proper
variable initialization. While the same approach could be applied to verify that the
code is indeed in SSA, it is much more elegant and efficient to perform verification
directly in SSA form [9,10]. For this, we have to first recover dominator infor-
mation from the code, after which the code is traversed in dominator-tree order to
type-check uses with their corresponding definition.

The decoder does not guarantee that the resulting graph is the proper dominator
tree for the program. A malicious program could be constructed by rearranging
basic blocks to make the code consumer believe certain basic blocks are dominating
others, while this is actually not the case. Would the code consumer blindly trust the
basic-block ordering, it would be vulnerable to such exploits. Fortunately, we can
easily verify the obtained dominator information by rephrasing the dominator-tree
problem as a data-flow equation.

DOM(b) is defined as a set containing every basic block that dominatesb. In-
stead of using iterative data-flow analysis, we initialize each set DOM(b) according
to the dominator tree produced by the decoder. If the code was transmitted in a de-
codable basic-block sequence, the data-flow equations will be satisfied in a single
iteration, confirming the decoded dominator tree. If they are not satisfied after one
iteration, the code consumer falls back to the standard solution of computing the
dominator tree from scratch using approaches like [3,12].

Once we have recovered the dominator tree, we traverse the code in dominator-
tree order and and determine the distinct type for each variable definition. This type
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is then matched to the respective uses. As variables are assigned exactly once and
we visit dominating blocks first, definitions will automatically appear before their
uses. If the decoder runs into a missing definition, the code is rejected.

Furthermore, each variable, except for variables defined byφ- instructions, has
one unique type, as it is assigned exactly once (SSA). This greatly simplifies type
checking. While traversing the code, the type of each definition is recorded and
for each use this table is consulted to verify that definition and use have compat-
ible types. As we have discussed above, the program does not contain any more
data-flow instructions such asdup . The remaining core instructions are self-typed,
i.e. the expected types of any consumed operands and the types of any produced
values are known statically. The only exception from this areφ-instructions, for
which the return type has to be formed through type inference over their operands.

A more detailed description of SSA-based bytecode verification can be found
in [9,10].

5 Related Work

Finding the dominator tree in a control-flow graph is an essential problem for pro-
gram analysis and transformation, e.g. Static Single Assignment form construc-
tion. While multiple algorithms with differing average and worst-case complexity
have been proposed [15,12,3,4], all these algorithms work in a single phase on the
control-flow graph. Based on these prior works we have split the construction into
the two phases described in this paper.

Static Single Assignment form is used as intermediate representation in most of
the current high-performance JIT-based virtual machines. However, SSA is rarely
used as transport format.

SafeTSA [1], an inherently safe mobile code representation format, uses SSA
as encoding and transport format. This has the additional advantage of eliminating
the need for verification as mobile code is stored in a self-consistent format that
cannot represent anything but well-formed and well-typed programs. This comes
at the price of abandoning the existing Java class-file format, which is not always
acceptable. Our approach and SafeTSA have in common that they both make the
code available to the JIT in SSA-form, which can be used to speed up code gener-
ation.

An example for using SSA-based representations for compilation of bytecode
is Marmot [6], a research platform for studying the implementation of high-level
programming languages. The main difference to our work is that Marmot, like
many other similar frameworks, focuses only at the code consumer side and does
not generate code-producer side hinting such as program reordering.

Annotating mobile code with proofs that can be checked by a code consumer
is a well explored area.Proof-carrying code(PCC) [17,16] addresses this prob-
lem by relieving the code consumer of the burden to verify the code. Instead, the
code producer computes a verification condition based on a public safety policy and
proves it to be true for the program. This proof is shipped to the code consumer
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along with the code. Upon receipt, the code consumer recomputes the verifica-
tion condition and can then check whether the attached proof indeed establishes
the verification condition as claimed by the code producer. Just like using SSA
as a transport format, shipping additional proof information along with the code
requires the abandonment of the original Java bytecode format.

The split verifier approach [22] is very similar to PCC. It annotates the JVML
with the fixed-point of the data-flow analysis otherwise performed by the JVM
during class loading. For annotated class files the verification is reduced to con-
firming that the annotation is indeed a valid fixed-point, which can be completed
in near-linear time. This idea has been used in our approach for the verification of
the computed dominator tree. Otherwise, the split verifier just like PCC requires
additional annotations to be shipped with the code.

6 Conclusions and Future Work

We have presented a novel approach to transport SSA information in Java bytecode
throughstructural annotation: Instead of introducing new bytecode instructions or
adding explicit annotations, the bytecode is rearranged and transformed to allow the
code consumer to infer SSA form without actually having to calculated dominator
tree and iterated dominance frontiers. The code consumer has to merely run some
simple tests to ensure that the encoded information is valid.

The code consumer can not only avoid having to perform these analyses, but
can also use a more efficient type-checking method operating directly on the SSA
representation. Instead of the worst-case quadratic data-flow analysis, verification
runs in linear time and a single sweep over the program.

The presented research is work in progress. While we have implemented a pro-
totype encoder and decoder system, the decoder is not fully integrated with a vir-
tual machine and thus we are not reporting any performance numbers at this point.
From previous work [9] we know that SSA-based verification is on average ap-
proximately 15% faster than traditional data-flow analysis based verification. Dis-
regarding the time it takes to calculate the dominator tree and iterated dominance
frontiers forφ-instruction placement, the speedup is 45%. We expect to achieve
a similar reduction in verification time, with the added benefit that SSA form is
immediately available to the JIT compiler without any additional computation.

As far as future work is concerned, we are currently working on a thorough
evaluation of the impact of our approach on legacy VMs. While the code executes
on legacy VMs, a certain slowdown can be expected. The most noticeable impact of
the transformation is an increase in code size. While this has a significant negative
impact on interpretation, we expect it to have only a limited impact on JIT-compiled
code. A second side-effect of the proposed structural annotation is a significant
increase in number of local variables used per method. In contrast to the code
size increase, this seems to affect code generation, in particular when the dynamic
compiler uses a simplistic register allocator.
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